File size: 11,109 Bytes
69d13ea de395e6 69d13ea 99b189c 69d13ea 057b246 7e68f03 ffa6c72 4348624 1aae856 7e68f03 69d13ea 7e68f03 1aae856 4348624 aff1c2e 4348624 69d13ea 4348624 69d13ea 4348624 69d13ea 4348624 61bdae6 69d13ea 903ebdd 3b67f5f 75e5563 de395e6 75e5563 de395e6 75e5563 de395e6 75e5563 0938a64 69d13ea 0938a64 69d13ea fc9714e a5cea98 69d13ea a5cea98 953b9e7 a5cea98 b609293 a5cea98 b609293 a5cea98 b609293 a5cea98 b609293 a5cea98 69d13ea 488707a a5cea98 d325258 a5cea98 69d13ea a5cea98 ab6112a 69d13ea ab6112a a5cea98 1ec8ae7 a5cea98 903ebdd a5cea98 d9d328f a5cea98 69d13ea 61bdae6 75e5563 69d13ea a5cea98 61bdae6 0938a64 a5cea98 0938a64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import os
import re
import random
from scipy.io.wavfile import write
from scipy.io.wavfile import read
import numpy as np
import gradio as gr
import yt_dlp
import subprocess
from pydub import AudioSegment
from scipy.signal import convolve
from audio_separator.separator import Separator
from lib.infer import infer_audio
import edge_tts
import tempfile
import anyio
from pathlib import Path
from lib.language_tts import language_dict
import shutil
import time
from argparse import ArgumentParser
from download_model import download_online_model
main_dir = Path().resolve()
print(main_dir)
os.chdir(main_dir)
models_dir = main_dir / "rvc_models"
audio_separat_dir = main_dir / "audio_input"
AUDIO_DIR = main_dir / 'audio_input'
# Function to list all folders in the models directory
def get_folders():
if models_dir.exists() and models_dir.is_dir():
return [folder.name for folder in models_dir.iterdir() if folder.is_dir()]
return []
# Function to refresh and return the list of folders
def refresh_folders():
return gr.Dropdown.update(choices=get_folders())
# Function to get the list of audio files in the specified directory
def get_audio_files():
if not os.path.exists(AUDIO_DIR):
os.makedirs(AUDIO_DIR)
return [f for f in os.listdir(AUDIO_DIR) if f.lower().endswith(('.mp3', '.wav', '.flac', '.ogg', '.aac'))]
# Function to return the full path of audio files for playback
def load_audio_files():
audio_files = get_audio_files()
return [os.path.join(AUDIO_DIR, f) for f in audio_files]
def refresh_audio_list():
audio_files = load_audio_files()
return gr.Dropdown.update(choices=audio_files)
def download_audio(url):
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': 'ytdl/%(title)s.%(ext)s',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192',
}],
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info_dict = ydl.extract_info(url, download=True)
file_path = ydl.prepare_filename(info_dict).rsplit('.', 1)[0] + '.wav'
return file_path
async def text_to_speech_edge(text, language_code):
voice = language_dict.get(language_code, "default_voice")
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
# Function to apply a basic reverb effect using convolution
def add_simple_reverb(input_audio):
# Load the uploaded audio file using pydub
sound = AudioSegment.from_file(input_audio)
# Convert AudioSegment to numpy array
samples = np.array(sound.get_array_of_samples())
# Define a simple impulse response for reverb (can be customized)
impulse_response = np.concatenate([np.zeros(5000), np.array([0.5**i for i in range(1000)])])
# Apply convolution (reverb effect)
reverbed_samples = convolve(samples, impulse_response, mode='full')
reverbed_samples = reverbed_samples[:len(samples)] # trim to original length
# Convert numpy array back to AudioSegment
reverbed_sound = sound._spawn(reverbed_samples.astype(np.int16).tobytes())
# Export the reverbed sound to a new file-like object (in-memory)
output_path = "vocals_with_reverb.wav"
reverbed_sound.export(output_path, format='wav')
return output_path
# Ensure this function is defined before your Gradio Blocks UI
def process_audio(MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE,
FILTER_RADIUS, RMS_MIX_RATE, PROTECT, SPLIT_INFER, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP,
KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio=None):
# If no sound path is given, use the uploaded file
if not SOUND_PATH and upload_audio is not None:
SOUND_PATH = os.path.join("uploaded_audio", upload_audio.name)
with open(SOUND_PATH, "wb") as f:
f.write(upload_audio.read())
# Check if a model name is provided
if not MODEL_NAME:
return "Please provide a model name."
# Run the inference process
os.system("chmod +x stftpitchshift")
inferred_audio = infer_audio(
MODEL_NAME,
SOUND_PATH,
F0_CHANGE,
F0_METHOD,
MIN_PITCH,
MAX_PITCH,
CREPE_HOP_LENGTH,
INDEX_RATE,
FILTER_RADIUS,
RMS_MIX_RATE,
PROTECT,
SPLIT_INFER,
MIN_SILENCE,
SILENCE_THRESHOLD,
SEEK_STEP,
KEEP_SILENCE,
FORMANT_SHIFT,
QUEFRENCY,
TIMBRE,
F0_AUTOTUNE,
OUTPUT_FORMAT
)
return inferred_audio
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument("--share", action="store_true", dest="share_enabled", default=False)
parser.add_argument("--listen", action="store_true", default=False)
parser.add_argument('--listen-host', type=str)
parser.add_argument('--listen-port', type=int)
args = parser.parse_args()
# Gradio Interface
with gr.Blocks(title="Hex RVC", theme=gr.themes.Base(primary_hue="red", secondary_hue="pink")) as app:
gr.Markdown("# Hex RVC - AI Audio Inference")
gr.Markdown("Join [AIHub](https://discord.gg/aihub) to get the RVC model!")
# Inference Tab with Priority on Settings
with gr.Tab("Inference"):
gr.Markdown("## Inference Settings")
with gr.Row():
MODEL_NAME = gr.Dropdown(
label="Select AI Model",
choices=get_folders(),
interactive=True,
info="Choose a pre-trained model for audio processing"
)
SOUND_PATH = gr.Dropdown(
choices=load_audio_files(),
label="Select Existing Audio File",
interactive=True,
info="Pick an audio file from the predefined directory"
)
upload_audio = gr.Audio(
label="Upload Your Own Audio",
type='filepath',
info="Upload an audio file if not using existing ones"
)
gr.Markdown("### Conversion Parameters")
with gr.Accordion("Conversion Settings", open=True):
with gr.Row():
F0_CHANGE = gr.Number(
label="Pitch Change (semitones)",
value=0,
info="Adjust the pitch of the output audio"
)
F0_METHOD = gr.Dropdown(
choices=["crepe", "harvest", "mangio-crepe", "rmvpe", "rmvpe_legacy", "fcpe", "fcpe_legacy", "hybrid[rmvpe+fcpe]"],
label="F0 Method",
value="fcpe",
info="Select the fundamental frequency extraction method"
)
with gr.Row():
MIN_PITCH = gr.Number(label="Min Pitch", value=50, info="Minimum pitch detection threshold")
MAX_PITCH = gr.Number(label="Max Pitch", value=1100, info="Maximum pitch detection threshold")
CREPE_HOP_LENGTH = gr.Number(label="Crepe Hop Length", value=120, info="Hop length for Crepe method")
INDEX_RATE = gr.Slider(label="Index Rate", minimum=0, maximum=1, value=0.75)
FILTER_RADIUS = gr.Number(label="Filter Radius", value=3, info="Filter intensity for smoothing")
RMS_MIX_RATE = gr.Slider(label="RMS Mix Rate", minimum=0, maximum=1, value=0.25)
PROTECT = gr.Slider(label="Protect Factor", minimum=0, maximum=1, value=0.33)
gr.Markdown("## Generate Audio")
output_audio = gr.Audio(label="Generated Audio Output", type='filepath')
with gr.Row():
refresh_btn = gr.Button("Refresh Lists")
run_button = gr.Button("Run Inference")
# Refresh Button for Updating Model and Audio Choices
refresh_btn.click(
lambda: (refresh_audio_list(), refresh_folders()),
outputs=[SOUND_PATH, MODEL_NAME]
)
# Run Inference and Display Result
run_button.click(
fn=process_audio,
inputs=[MODEL_NAME, SOUND_PATH, F0_CHANGE, F0_METHOD, MIN_PITCH, MAX_PITCH, CREPE_HOP_LENGTH, INDEX_RATE,
FILTER_RADIUS, RMS_MIX_RATE, PROTECT, MIN_SILENCE, SILENCE_THRESHOLD, SEEK_STEP,
KEEP_SILENCE, FORMANT_SHIFT, QUEFRENCY, TIMBRE, F0_AUTOTUNE, OUTPUT_FORMAT, upload_audio],
outputs=output_audio
)
# Other Tabs (Download Model, Audio Separation)
with gr.Tab("Download RVC Model"):
gr.Markdown("## Download RVC Model")
url = gr.Textbox(label="Model URL")
dirname = gr.Textbox(label="Model Directory Name")
download_button = gr.Button("Download Model")
download_output = gr.Textbox(label="Download Status")
download_button.click(
download_online_model,
inputs=[url, dirname],
outputs=download_output
)
with gr.Tab("Audio Effect (demo)"):
input_audio = gr.Textbox(label="Path Audio File")
output_audio = gr.Audio(type="filepath", label="Processed Audio with Reverb")
reverb_btn = gr.Button("Add Reverb")
reverb_btn.click(add_simple_reverb, inputs=input_audio, outputs=output_audio)
with gr.Tab("Audio Separation"):
gr.Markdown("## Audio Separation")
input_audio = gr.Audio(type="filepath", label="Upload Audio for Separation")
with gr.Accordion("Separation by Link", open = False):
with gr.Row():
roformer_link = gr.Textbox(
label = "Link",
placeholder = "Paste the link here",
interactive = True
)
with gr.Row():
gr.Markdown("You can paste the link to the video/audio from many sites, check the complete list [here](https://github.com/yt-dlp/yt-dlp/blob/master/supportedsites.md)")
with gr.Row():
roformer_download_button = gr.Button(
"Download!",
variant = "primary"
)
separate_button = gr.Button("Separate Audio")
separation_output = gr.Textbox(label="Separation Output Path")
roformer_download_button.click(download_audio, [roformer_link], [input_audio])
separate_button.click(
fn=separate_audio,
inputs=[input_audio, "model_bs_roformer_ep_317_sdr_12.9755.ckpt",
"UVR-DeEcho-DeReverb.pth",
"mel_band_roformer_karaoke_aufr33_viperx_sdr_10.1956.ckpt"],
outputs=[separation_output]
)
app.launch(
share=args.share_enabled,
server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
server_port=args.listen_port
)
|