distilbert-classn-LinearAlg-finetuned-pred-span-width-5

This model is a fine-tuned version of dslim/distilbert-NER on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6839
  • Accuracy: 0.8254
  • F1: 0.8236
  • Precision: 0.8363
  • Recall: 0.8254

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
4.9451 0.6849 50 2.4266 0.1190 0.0734 0.0812 0.1190
4.9004 1.3699 100 2.4006 0.1508 0.1049 0.1791 0.1508
4.864 2.0548 150 2.3589 0.1667 0.1427 0.1829 0.1667
4.7694 2.7397 200 2.3013 0.1984 0.1656 0.1611 0.1984
4.5881 3.4247 250 2.2257 0.2778 0.2715 0.3458 0.2778
4.4949 4.1096 300 2.0636 0.4127 0.3981 0.4152 0.4127
4.0569 4.7945 350 1.8632 0.5397 0.5396 0.5936 0.5397
3.6327 5.4795 400 1.6784 0.6190 0.6196 0.6836 0.6190
3.0577 6.1644 450 1.4586 0.6429 0.6206 0.6410 0.6429
2.6585 6.8493 500 1.2315 0.7063 0.7024 0.7198 0.7063
2.0628 7.5342 550 1.0891 0.7381 0.7300 0.7656 0.7381
1.5864 8.2192 600 0.9558 0.7857 0.7781 0.8529 0.7857
1.1035 8.9041 650 0.8837 0.7698 0.7657 0.8141 0.7698
0.8962 9.5890 700 0.8059 0.8254 0.8178 0.8573 0.8254
0.6185 10.2740 750 0.7363 0.8492 0.8527 0.8948 0.8492
0.4703 10.9589 800 0.6929 0.8254 0.8237 0.8539 0.8254
0.3438 11.6438 850 0.6574 0.8175 0.8192 0.8409 0.8175
0.2744 12.3288 900 0.6597 0.8175 0.8131 0.8335 0.8175
0.1704 13.0137 950 0.6842 0.8175 0.8188 0.8592 0.8175
0.1469 13.6986 1000 0.6285 0.8333 0.8286 0.8475 0.8333
0.0849 14.3836 1050 0.6737 0.8095 0.8112 0.8460 0.8095
0.1058 15.0685 1100 0.6356 0.8413 0.8383 0.8545 0.8413
0.069 15.7534 1150 0.6495 0.8333 0.8364 0.8672 0.8333
0.0304 16.4384 1200 0.6442 0.8492 0.8484 0.8687 0.8492
0.0548 17.1233 1250 0.6309 0.8413 0.8366 0.8560 0.8413
0.0388 17.8082 1300 0.6645 0.8254 0.8258 0.8468 0.8254
0.0108 18.4932 1350 0.6785 0.8413 0.8380 0.8581 0.8413
0.0396 19.1781 1400 0.6720 0.8175 0.8196 0.8410 0.8175
0.0237 19.8630 1450 0.6676 0.8333 0.8328 0.8440 0.8333
0.0084 20.5479 1500 0.6876 0.8254 0.8237 0.8389 0.8254
0.0451 21.2329 1550 0.6760 0.8333 0.8333 0.8497 0.8333
0.0204 21.9178 1600 0.6818 0.8333 0.8333 0.8497 0.8333
0.0151 22.6027 1650 0.6830 0.8095 0.8099 0.8276 0.8095
0.02 23.2877 1700 0.6841 0.8254 0.8237 0.8389 0.8254
0.0057 23.9726 1750 0.6829 0.8254 0.8236 0.8363 0.8254
0.006 24.6575 1800 0.6839 0.8254 0.8236 0.8363 0.8254

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
65.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Heather-Driver/distilbert-classn-LinearAlg-finetuned-pred-span-width-5

Finetuned
(27)
this model