File size: 2,440 Bytes
297dfe3 a67bafb 297dfe3 b087cf8 297dfe3 b087cf8 dd84f58 297dfe3 a67bafb 297dfe3 dd84f58 297dfe3 b087cf8 297dfe3 a67bafb 297dfe3 a67bafb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: brand-safety-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# brand-safety-model
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4779
- Accuracy: 0.8657
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.581 | 1.0 | 112 | 1.4547 | 0.6798 |
| 0.9156 | 2.0 | 224 | 0.8586 | 0.7904 |
| 0.6402 | 3.0 | 336 | 0.6679 | 0.8292 |
| 0.5405 | 4.0 | 448 | 0.5595 | 0.8551 |
| 0.4553 | 5.0 | 560 | 0.5183 | 0.8534 |
| 0.3509 | 6.0 | 672 | 0.4825 | 0.8629 |
| 0.316 | 7.0 | 784 | 0.4786 | 0.8584 |
| 0.2506 | 8.0 | 896 | 0.4710 | 0.8618 |
| 0.2049 | 9.0 | 1008 | 0.4912 | 0.8567 |
| 0.1416 | 10.0 | 1120 | 0.4881 | 0.8567 |
| 0.1572 | 11.0 | 1232 | 0.4779 | 0.8657 |
| 0.1407 | 12.0 | 1344 | 0.4886 | 0.8596 |
| 0.132 | 13.0 | 1456 | 0.4933 | 0.8618 |
| 0.1319 | 14.0 | 1568 | 0.4807 | 0.8635 |
| 0.1277 | 15.0 | 1680 | 0.4846 | 0.8618 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 2.20.0
- Tokenizers 0.20.3
|