brand-safety-model

This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5795
  • Accuracy: 0.8630

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.435 1.0 106 1.1905 0.7450
0.8006 2.0 212 0.7220 0.8152
0.5227 3.0 318 0.5708 0.8406
0.4252 4.0 424 0.5011 0.8501
0.3078 5.0 530 0.4905 0.8506
0.2471 6.0 636 0.5174 0.8447
0.1752 7.0 742 0.5095 0.8589
0.2241 8.0 848 0.5265 0.8524
0.1165 9.0 954 0.5525 0.8577
0.102 10.0 1060 0.5510 0.8512
0.0691 11.0 1166 0.5730 0.8577
0.0809 12.0 1272 0.5670 0.8619
0.0631 13.0 1378 0.5715 0.8625
0.0589 14.0 1484 0.5756 0.8625
0.0628 15.0 1590 0.5795 0.8630

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 2.20.0
  • Tokenizers 0.20.3
Downloads last month
38
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for Hanish2007/brand-safety-model

Quantized
(25)
this model