whisper-tiny / README.md
Gwenn-LR's picture
End of training
7695f15 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.31030228254164094

whisper-tiny

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5900
  • Wer Ortho: 0.3103
  • Wer: 0.3103

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 500
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.7824 1.7857 50 1.0732 0.4565 0.4565
0.3528 3.5714 100 0.4932 0.3745 0.3745
0.1313 5.3571 150 0.5215 0.3430 0.3430
0.035 7.1429 200 0.5468 0.3387 0.3387
0.0103 8.9286 250 0.5900 0.3103 0.3103
0.0085 10.7143 300 0.6345 0.3307 0.3307
0.009 12.5 350 0.6771 0.3418 0.3418
0.0137 14.2857 400 0.6456 0.3374 0.3374
0.0138 16.0714 450 0.6171 0.3294 0.3294
0.0151 17.8571 500 0.7379 0.4312 0.4312

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0