FloraBERT / module /utils.py
Gurveer05's picture
Added interface
1da2a5a
import os
import sys
import wget
import requests
import re
import argparse
from types import GeneratorType, ModuleType
from typing import Union, Tuple
import subprocess
from pathlib import PosixPath, Path
import importlib as im
import json
import pickle
from pydantic import *
from typing import List
import pandas as pd
import numpy as np
from IPython.display import display
import torch
from tqdm import tqdm
from sklearn.metrics import r2_score
from .config import settings, output, data_final, models
def preprocess_genex(genex_data: pd.DataFrame, settings: dict) -> pd.DataFrame:
if settings["data"].get("preprocess", False):
preproc_dict = settings["data"]["preprocess"]
preproc_type = preproc_dict["type"]
if preproc_type == "log":
delta = preproc_dict["delta"]
df_preprocessed = genex_data.applymap(lambda x: np.log(x + delta))
elif preproc_type == "binary":
thresh = preproc_dict["threshold"]
df_preprocessed = genex_data.applymap(lambda x: float(x > thresh))
elif preproc_type == "ceiling":
ceiling = preproc_dict["ceiling"]
df_preprocessed = genex_data.applymap(lambda x: min(ceiling, x))
else:
df_preprocessed = genex_data
return df_preprocessed
else:
return genex_data
def get_args(
data_dir: DirectoryPath = data_final / "transformer" / "seq",
train_data: FilePath = "all_seqs_train.txt",
eval_data: FilePath = None,
test_data: FilePath = "all_seqs_test.txt",
output_dir: DirectoryPath = models / "transformer" / "language-model",
model_name: str = None,
pretrained_model: FilePath = None,
tokenizer_dir: DirectoryPath = None,
log_offset: int = None,
preprocessor: str = None,
filter_empty: bool = False,
hyperparam_search_metrics: List[str] = None,
hyperparam_search_trials: int = None,
transformation: str = None,
output_mode: str = None,
) -> argparse.Namespace:
"""Use Python's ArgumentParser to create a namespace from (optional) user input
Args:
data_dir ([type], optional): Base location of data files. Defaults to data_final/'transformer'/'seq'.
train_data (str, optional): Name of train data file in `data_dir` Defaults to 'all_seqs_train.txt'.
test_data (str, optional): Name of test data file in `data_dir`. Defaults to 'all_seqs_test.txt'.
output_dir ([type], optional): Location to save trained model. Defaults to models/'transformer'/'language-model'.
model_name (Union[str, PosixPath], optional): Name of model
pretrained_mdoel (Union[str, PosixPath], optional): path to config and weights for huggingface pretrained model.
tokenizer_dir (Union[str, PosixPath], optional): path to config files for huggingface pretrained tokenizer.
filter_empty (bool, optional): Whether to filter out empty sequences.
Necessary for kmer-based models; takes additional time.
hyperparam_search_metrics (Union[list, str], optional): metrics for hyperparameter search.
hyperparam_search_trials (int, optional): number of trials to run hyperparameter search.
transformation (str, optional): how to transform data. Defaults to None.
output_mode (str, optional): default output mode for model and data transformation. Defaults to None.
Returns:
argparse.Namespace: parsed arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"-w",
"--warmstart",
action="store_true",
help="Whether to start with a saved checkpoint",
default=False,
)
parser.add_argument("--num-embeddings", type=int, default=-1)
parser.add_argument(
"--data-dir",
type=str,
default=str(data_dir),
help="Directory containing train/eval data. Defaults to data/final/transformer/seq",
)
parser.add_argument(
"--train-data",
type=str,
default=train_data,
help="Name of training data file. Will be added to the end of `--data-dir`.",
)
parser.add_argument(
"--eval-data",
type=str,
default=eval_data,
help="Name of eval data file. Will be added to the end of `--data-dir`.",
)
parser.add_argument(
"--test-data",
type=str,
default=test_data,
help="Name of test data file. Will be added to the end of `--data-dir`.",
)
parser.add_argument("--output-dir", type=str, default=str(output_dir))
parser.add_argument(
"--model-name",
type=str,
help='Name of model. Supported values are "roberta-lm", "roberta-pred", "roberta-pred-mean-pool", "dnabert-lm", "dnabert-pred", "dnabert-pred-mean-pool"',
default=model_name,
)
parser.add_argument(
"--pretrained-model",
type=str,
help="Directory containing config.json and pytorch_model.bin files for loading pretrained huggingface model",
default=(str(pretrained_model) if pretrained_model else None),
)
parser.add_argument(
"--tokenizer-dir",
type=str,
help="Directory containing necessary files to instantiate pretrained tokenizer.",
default=str(tokenizer_dir),
)
parser.add_argument(
"--log-offset",
type=float,
help="Offset to apply to gene expression values before log transform",
default=log_offset,
)
parser.add_argument(
"--preprocessor",
type=str,
help="Path to pickled preprocessor file",
default=preprocessor,
)
parser.add_argument(
"--filter-empty",
help="Whether to filter out empty sequences.",
default=filter_empty,
action="store_true",
)
parser.add_argument(
"--tissue-subset", default=None, help="Subset of tissues to use", nargs="*"
)
parser.add_argument("--hyperparameter-search", action="store_true", default=False)
parser.add_argument("--ntrials", default=hyperparam_search_trials, type=int)
parser.add_argument("--metrics", default=hyperparam_search_metrics, nargs="*")
parser.add_argument("--direction", type=str, default="minimize")
parser.add_argument(
"--nshards",
type=int,
default=None,
help="Number of shards to divide data into; only the first is kept.",
)
parser.add_argument(
"--nshards-eval",
type=int,
default=None,
help="Number of shards to divide eval data into.",
)
parser.add_argument(
"--threshold",
type=float,
default=None,
help="Minimum value for filtering gene expression values.",
)
parser.add_argument(
"--transformation",
type=str,
default=transformation,
help='How to transform the data. Options are "log", "boxcox"',
)
parser.add_argument(
"--freeze-base",
action="store_true",
help="Freeze the pretrained base of the model",
)
parser.add_argument(
"--output-mode",
type=str,
help='Output mode for model: {"regression", "classification"}',
default=output_mode,
)
parser.add_argument(
"--learning-rate",
type=float,
help="Learning rate for training. Default None",
default=None,
)
parser.add_argument(
"--num-train-epochs",
type=int,
help="Number of epochs to train for",
default=None,
)
parser.add_argument(
"--search-metric",
type=str,
help="Metric to optimize in hyperparameter search",
default=None,
)
parser.add_argument("--batch-norm", action="store_true", default=False)
args, unknown = parser.parse_known_args()
if args.pretrained_model and not args.pretrained_model.startswith("/"):
args.pretrained_model = str(Path.cwd() / args.pretrained_model)
args.data_dir = Path(args.data_dir)
args.output_dir = Path(args.output_dir)
args.train_data = _get_fpath_if_not_none(args.data_dir, args.train_data)
args.eval_data = _get_fpath_if_not_none(args.data_dir, args.eval_data)
args.test_data = _get_fpath_if_not_none(args.data_dir, args.test_data)
args.preprocessor = Path(args.preprocessor) if args.preprocessor else None
if args.tissue_subset is not None:
if isinstance(args.tissue_subset, (int, str)):
args.tissue_subset = [args.tissue_subset]
args.tissue_subset = [
int(t) if t.isnumeric() else t for t in args.tissue_subset
]
return args
def get_model_settings(
settings: dict, args: dict = None, model_name: str = None
) -> dict:
"""Get the appropriate model settings from the dictionary `settings`."""
if model_name is None:
model_name = args.model_name
base_model_name = model_name.split("-")[0] + "-base"
base_model_settings = settings["models"].get(base_model_name, {})
model_settings = settings["models"].get(model_name, {})
data_settings = settings["data"]
settings = dict(**base_model_settings, **model_settings, **data_settings)
if args is not None:
if args.output_mode:
settings["output_mode"] = args.output_mode
if args.tissue_subset is not None:
settings["num_labels"] = len(args.tissue_subset)
if args.batch_norm:
settings["batch_norm"] = args.batch_norm
return settings
def _get_fpath_if_not_none(
dirpath: PosixPath, fpath: PosixPath
) -> Union[None, PosixPath]:
if fpath:
return dirpath / fpath
return None
def load_pickle(path: PosixPath) -> object:
with path.open("rb") as f:
obj = pickle.load(f)
return obj