File size: 9,748 Bytes
bf1f674 1da2a5a bf1f674 1da2a5a bf1f674 1da2a5a bf1f674 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import os
import sys
import wget
import requests
import re
import argparse
from types import GeneratorType, ModuleType
from typing import Union, Tuple
import subprocess
from pathlib import PosixPath, Path
import importlib as im
import json
import pickle
from pydantic import *
from typing import List
import pandas as pd
import numpy as np
from IPython.display import display
import torch
from tqdm import tqdm
from sklearn.metrics import r2_score
from .config import settings, output, data_final, models
def preprocess_genex(genex_data: pd.DataFrame, settings: dict) -> pd.DataFrame:
if settings["data"].get("preprocess", False):
preproc_dict = settings["data"]["preprocess"]
preproc_type = preproc_dict["type"]
if preproc_type == "log":
delta = preproc_dict["delta"]
df_preprocessed = genex_data.applymap(lambda x: np.log(x + delta))
elif preproc_type == "binary":
thresh = preproc_dict["threshold"]
df_preprocessed = genex_data.applymap(lambda x: float(x > thresh))
elif preproc_type == "ceiling":
ceiling = preproc_dict["ceiling"]
df_preprocessed = genex_data.applymap(lambda x: min(ceiling, x))
else:
df_preprocessed = genex_data
return df_preprocessed
else:
return genex_data
def get_args(
data_dir: DirectoryPath = data_final / "transformer" / "seq",
train_data: FilePath = "all_seqs_train.txt",
eval_data: FilePath = None,
test_data: FilePath = "all_seqs_test.txt",
output_dir: DirectoryPath = models / "transformer" / "language-model",
model_name: str = None,
pretrained_model: FilePath = None,
tokenizer_dir: DirectoryPath = None,
log_offset: int = None,
preprocessor: str = None,
filter_empty: bool = False,
hyperparam_search_metrics: List[str] = None,
hyperparam_search_trials: int = None,
transformation: str = None,
output_mode: str = None,
) -> argparse.Namespace:
"""Use Python's ArgumentParser to create a namespace from (optional) user input
Args:
data_dir ([type], optional): Base location of data files. Defaults to data_final/'transformer'/'seq'.
train_data (str, optional): Name of train data file in `data_dir` Defaults to 'all_seqs_train.txt'.
test_data (str, optional): Name of test data file in `data_dir`. Defaults to 'all_seqs_test.txt'.
output_dir ([type], optional): Location to save trained model. Defaults to models/'transformer'/'language-model'.
model_name (Union[str, PosixPath], optional): Name of model
pretrained_mdoel (Union[str, PosixPath], optional): path to config and weights for huggingface pretrained model.
tokenizer_dir (Union[str, PosixPath], optional): path to config files for huggingface pretrained tokenizer.
filter_empty (bool, optional): Whether to filter out empty sequences.
Necessary for kmer-based models; takes additional time.
hyperparam_search_metrics (Union[list, str], optional): metrics for hyperparameter search.
hyperparam_search_trials (int, optional): number of trials to run hyperparameter search.
transformation (str, optional): how to transform data. Defaults to None.
output_mode (str, optional): default output mode for model and data transformation. Defaults to None.
Returns:
argparse.Namespace: parsed arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"-w",
"--warmstart",
action="store_true",
help="Whether to start with a saved checkpoint",
default=False,
)
parser.add_argument("--num-embeddings", type=int, default=-1)
parser.add_argument(
"--data-dir",
type=str,
default=str(data_dir),
help="Directory containing train/eval data. Defaults to data/final/transformer/seq",
)
parser.add_argument(
"--train-data",
type=str,
default=train_data,
help="Name of training data file. Will be added to the end of `--data-dir`.",
)
parser.add_argument(
"--eval-data",
type=str,
default=eval_data,
help="Name of eval data file. Will be added to the end of `--data-dir`.",
)
parser.add_argument(
"--test-data",
type=str,
default=test_data,
help="Name of test data file. Will be added to the end of `--data-dir`.",
)
parser.add_argument("--output-dir", type=str, default=str(output_dir))
parser.add_argument(
"--model-name",
type=str,
help='Name of model. Supported values are "roberta-lm", "roberta-pred", "roberta-pred-mean-pool", "dnabert-lm", "dnabert-pred", "dnabert-pred-mean-pool"',
default=model_name,
)
parser.add_argument(
"--pretrained-model",
type=str,
help="Directory containing config.json and pytorch_model.bin files for loading pretrained huggingface model",
default=(str(pretrained_model) if pretrained_model else None),
)
parser.add_argument(
"--tokenizer-dir",
type=str,
help="Directory containing necessary files to instantiate pretrained tokenizer.",
default=str(tokenizer_dir),
)
parser.add_argument(
"--log-offset",
type=float,
help="Offset to apply to gene expression values before log transform",
default=log_offset,
)
parser.add_argument(
"--preprocessor",
type=str,
help="Path to pickled preprocessor file",
default=preprocessor,
)
parser.add_argument(
"--filter-empty",
help="Whether to filter out empty sequences.",
default=filter_empty,
action="store_true",
)
parser.add_argument(
"--tissue-subset", default=None, help="Subset of tissues to use", nargs="*"
)
parser.add_argument("--hyperparameter-search", action="store_true", default=False)
parser.add_argument("--ntrials", default=hyperparam_search_trials, type=int)
parser.add_argument("--metrics", default=hyperparam_search_metrics, nargs="*")
parser.add_argument("--direction", type=str, default="minimize")
parser.add_argument(
"--nshards",
type=int,
default=None,
help="Number of shards to divide data into; only the first is kept.",
)
parser.add_argument(
"--nshards-eval",
type=int,
default=None,
help="Number of shards to divide eval data into.",
)
parser.add_argument(
"--threshold",
type=float,
default=None,
help="Minimum value for filtering gene expression values.",
)
parser.add_argument(
"--transformation",
type=str,
default=transformation,
help='How to transform the data. Options are "log", "boxcox"',
)
parser.add_argument(
"--freeze-base",
action="store_true",
help="Freeze the pretrained base of the model",
)
parser.add_argument(
"--output-mode",
type=str,
help='Output mode for model: {"regression", "classification"}',
default=output_mode,
)
parser.add_argument(
"--learning-rate",
type=float,
help="Learning rate for training. Default None",
default=None,
)
parser.add_argument(
"--num-train-epochs",
type=int,
help="Number of epochs to train for",
default=None,
)
parser.add_argument(
"--search-metric",
type=str,
help="Metric to optimize in hyperparameter search",
default=None,
)
parser.add_argument("--batch-norm", action="store_true", default=False)
args, unknown = parser.parse_known_args()
if args.pretrained_model and not args.pretrained_model.startswith("/"):
args.pretrained_model = str(Path.cwd() / args.pretrained_model)
args.data_dir = Path(args.data_dir)
args.output_dir = Path(args.output_dir)
args.train_data = _get_fpath_if_not_none(args.data_dir, args.train_data)
args.eval_data = _get_fpath_if_not_none(args.data_dir, args.eval_data)
args.test_data = _get_fpath_if_not_none(args.data_dir, args.test_data)
args.preprocessor = Path(args.preprocessor) if args.preprocessor else None
if args.tissue_subset is not None:
if isinstance(args.tissue_subset, (int, str)):
args.tissue_subset = [args.tissue_subset]
args.tissue_subset = [
int(t) if t.isnumeric() else t for t in args.tissue_subset
]
return args
def get_model_settings(
settings: dict, args: dict = None, model_name: str = None
) -> dict:
"""Get the appropriate model settings from the dictionary `settings`."""
if model_name is None:
model_name = args.model_name
base_model_name = model_name.split("-")[0] + "-base"
base_model_settings = settings["models"].get(base_model_name, {})
model_settings = settings["models"].get(model_name, {})
data_settings = settings["data"]
settings = dict(**base_model_settings, **model_settings, **data_settings)
if args is not None:
if args.output_mode:
settings["output_mode"] = args.output_mode
if args.tissue_subset is not None:
settings["num_labels"] = len(args.tissue_subset)
if args.batch_norm:
settings["batch_norm"] = args.batch_norm
return settings
def _get_fpath_if_not_none(
dirpath: PosixPath, fpath: PosixPath
) -> Union[None, PosixPath]:
if fpath:
return dirpath / fpath
return None
def load_pickle(path: PosixPath) -> object:
with path.open("rb") as f:
obj = pickle.load(f)
return obj
|