File size: 9,748 Bytes
bf1f674
 
 
 
 
 
 
 
 
 
 
 
 
1da2a5a
 
bf1f674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da2a5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf1f674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1da2a5a
bf1f674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import sys
import wget
import requests
import re
import argparse
from types import GeneratorType, ModuleType
from typing import Union, Tuple
import subprocess
from pathlib import PosixPath, Path
import importlib as im
import json
import pickle
from pydantic import *
from typing import List
import pandas as pd
import numpy as np
from IPython.display import display
import torch
from tqdm import tqdm
from sklearn.metrics import r2_score

from .config import settings, output, data_final, models

def preprocess_genex(genex_data: pd.DataFrame, settings: dict) -> pd.DataFrame:
    if settings["data"].get("preprocess", False):
        preproc_dict = settings["data"]["preprocess"]
        preproc_type = preproc_dict["type"]
        if preproc_type == "log":
            delta = preproc_dict["delta"]
            df_preprocessed = genex_data.applymap(lambda x: np.log(x + delta))
        elif preproc_type == "binary":
            thresh = preproc_dict["threshold"]
            df_preprocessed = genex_data.applymap(lambda x: float(x > thresh))
        elif preproc_type == "ceiling":
            ceiling = preproc_dict["ceiling"]
            df_preprocessed = genex_data.applymap(lambda x: min(ceiling, x))
        else:
            df_preprocessed = genex_data
        return df_preprocessed
    else:
        return genex_data

def get_args(
    data_dir: DirectoryPath = data_final / "transformer" / "seq",
    train_data: FilePath = "all_seqs_train.txt",
    eval_data: FilePath = None,
    test_data: FilePath = "all_seqs_test.txt",
    output_dir: DirectoryPath = models / "transformer" / "language-model",
    model_name: str = None,
    pretrained_model: FilePath = None,
    tokenizer_dir: DirectoryPath = None,
    log_offset: int = None,
    preprocessor: str = None,
    filter_empty: bool = False,
    hyperparam_search_metrics: List[str] = None,
    hyperparam_search_trials: int = None,
    transformation: str = None,
    output_mode: str = None,
) -> argparse.Namespace:
    """Use Python's ArgumentParser to create a namespace from (optional) user input

    Args:
        data_dir ([type], optional): Base location of data files. Defaults to data_final/'transformer'/'seq'.
        train_data (str, optional): Name of train data file in `data_dir` Defaults to 'all_seqs_train.txt'.
        test_data (str, optional): Name of test data file in `data_dir`. Defaults to 'all_seqs_test.txt'.
        output_dir ([type], optional): Location to save trained model. Defaults to models/'transformer'/'language-model'.
        model_name (Union[str, PosixPath], optional): Name of model
        pretrained_mdoel (Union[str, PosixPath], optional): path to config and weights for huggingface pretrained model.
        tokenizer_dir (Union[str, PosixPath], optional): path to config files for huggingface pretrained tokenizer.
        filter_empty (bool, optional): Whether to filter out empty sequences.
            Necessary for kmer-based models; takes additional time.
        hyperparam_search_metrics (Union[list, str], optional): metrics for hyperparameter search.
        hyperparam_search_trials (int, optional): number of trials to run hyperparameter search.
        transformation (str, optional): how to transform data. Defaults to None.
        output_mode (str, optional): default output mode for model and data transformation. Defaults to None.
    Returns:
        argparse.Namespace: parsed arguments
    """
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-w",
        "--warmstart",
        action="store_true",
        help="Whether to start with a saved checkpoint",
        default=False,
    )
    parser.add_argument("--num-embeddings", type=int, default=-1)
    parser.add_argument(
        "--data-dir",
        type=str,
        default=str(data_dir),
        help="Directory containing train/eval data. Defaults to data/final/transformer/seq",
    )
    parser.add_argument(
        "--train-data",
        type=str,
        default=train_data,
        help="Name of training data file. Will be added to the end of `--data-dir`.",
    )
    parser.add_argument(
        "--eval-data",
        type=str,
        default=eval_data,
        help="Name of eval data file. Will be added to the end of `--data-dir`.",
    )
    parser.add_argument(
        "--test-data",
        type=str,
        default=test_data,
        help="Name of test data file. Will be added to the end of `--data-dir`.",
    )
    parser.add_argument("--output-dir", type=str, default=str(output_dir))
    parser.add_argument(
        "--model-name",
        type=str,
        help='Name of model. Supported values are "roberta-lm", "roberta-pred", "roberta-pred-mean-pool", "dnabert-lm", "dnabert-pred", "dnabert-pred-mean-pool"',
        default=model_name,
    )
    parser.add_argument(
        "--pretrained-model",
        type=str,
        help="Directory containing config.json and pytorch_model.bin files for loading pretrained huggingface model",
        default=(str(pretrained_model) if pretrained_model else None),
    )
    parser.add_argument(
        "--tokenizer-dir",
        type=str,
        help="Directory containing necessary files to instantiate pretrained tokenizer.",
        default=str(tokenizer_dir),
    )
    parser.add_argument(
        "--log-offset",
        type=float,
        help="Offset to apply to gene expression values before log transform",
        default=log_offset,
    )
    parser.add_argument(
        "--preprocessor",
        type=str,
        help="Path to pickled preprocessor file",
        default=preprocessor,
    )
    parser.add_argument(
        "--filter-empty",
        help="Whether to filter out empty sequences.",
        default=filter_empty,
        action="store_true",
    )
    parser.add_argument(
        "--tissue-subset", default=None, help="Subset of tissues to use", nargs="*"
    )
    parser.add_argument("--hyperparameter-search", action="store_true", default=False)
    parser.add_argument("--ntrials", default=hyperparam_search_trials, type=int)
    parser.add_argument("--metrics", default=hyperparam_search_metrics, nargs="*")
    parser.add_argument("--direction", type=str, default="minimize")
    parser.add_argument(
        "--nshards",
        type=int,
        default=None,
        help="Number of shards to divide data into; only the first is kept.",
    )
    parser.add_argument(
        "--nshards-eval",
        type=int,
        default=None,
        help="Number of shards to divide eval data into.",
    )
    parser.add_argument(
        "--threshold",
        type=float,
        default=None,
        help="Minimum value for filtering gene expression values.",
    )
    parser.add_argument(
        "--transformation",
        type=str,
        default=transformation,
        help='How to transform the data. Options are "log", "boxcox"',
    )
    parser.add_argument(
        "--freeze-base",
        action="store_true",
        help="Freeze the pretrained base of the model",
    )
    parser.add_argument(
        "--output-mode",
        type=str,
        help='Output mode for model: {"regression", "classification"}',
        default=output_mode,
    )
    parser.add_argument(
        "--learning-rate",
        type=float,
        help="Learning rate for training. Default None",
        default=None,
    )
    parser.add_argument(
        "--num-train-epochs",
        type=int,
        help="Number of epochs to train for",
        default=None,
    )
    parser.add_argument(
        "--search-metric",
        type=str,
        help="Metric to optimize in hyperparameter search",
        default=None,
    )
    parser.add_argument("--batch-norm", action="store_true", default=False)
    args, unknown = parser.parse_known_args()

    if args.pretrained_model and not args.pretrained_model.startswith("/"):
        args.pretrained_model = str(Path.cwd() / args.pretrained_model)

    args.data_dir = Path(args.data_dir)
    args.output_dir = Path(args.output_dir)

    args.train_data = _get_fpath_if_not_none(args.data_dir, args.train_data)
    args.eval_data = _get_fpath_if_not_none(args.data_dir, args.eval_data)
    args.test_data = _get_fpath_if_not_none(args.data_dir, args.test_data)

    args.preprocessor = Path(args.preprocessor) if args.preprocessor else None

    if args.tissue_subset is not None:
        if isinstance(args.tissue_subset, (int, str)):
            args.tissue_subset = [args.tissue_subset]
        args.tissue_subset = [
            int(t) if t.isnumeric() else t for t in args.tissue_subset
        ]
    return args

def get_model_settings(
    settings: dict, args: dict = None, model_name: str = None
) -> dict:
    """Get the appropriate model settings from the dictionary `settings`."""
    if model_name is None:
        model_name = args.model_name
    base_model_name = model_name.split("-")[0] + "-base"
    base_model_settings = settings["models"].get(base_model_name, {})
    model_settings = settings["models"].get(model_name, {})
    data_settings = settings["data"]
    settings = dict(**base_model_settings, **model_settings, **data_settings)

    if args is not None:
        if args.output_mode:
            settings["output_mode"] = args.output_mode
        if args.tissue_subset is not None:
            settings["num_labels"] = len(args.tissue_subset)
        if args.batch_norm:
            settings["batch_norm"] = args.batch_norm

    return settings

def _get_fpath_if_not_none(
    dirpath: PosixPath, fpath: PosixPath
) -> Union[None, PosixPath]:
    if fpath:
        return dirpath / fpath
    return None

def load_pickle(path: PosixPath) -> object:
    with path.open("rb") as f:
        obj = pickle.load(f)
    return obj