|
--- |
|
license: apache-2.0 |
|
base_model: distilbert/distilbert-base-multilingual-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-multilingual-cased-finetuned-ner-geocorpus |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-multilingual-cased-finetuned-ner-geocorpus |
|
|
|
This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1028 |
|
- Precision: 0.8079 |
|
- Recall: 0.8868 |
|
- F1: 0.8455 |
|
- Accuracy: 0.9747 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 276 | 0.1866 | 0.7323 | 0.6760 | 0.7030 | 0.9551 | |
|
| 0.2877 | 2.0 | 552 | 0.1247 | 0.7870 | 0.7788 | 0.7829 | 0.9685 | |
|
| 0.2877 | 3.0 | 828 | 0.1125 | 0.8547 | 0.7819 | 0.8167 | 0.9719 | |
|
| 0.0858 | 4.0 | 1104 | 0.1043 | 0.8274 | 0.8463 | 0.8368 | 0.9739 | |
|
| 0.0858 | 5.0 | 1380 | 0.1062 | 0.8349 | 0.8349 | 0.8349 | 0.9730 | |
|
| 0.0424 | 6.0 | 1656 | 0.1028 | 0.8079 | 0.8868 | 0.8455 | 0.9747 | |
|
| 0.0424 | 7.0 | 1932 | 0.1139 | 0.8586 | 0.8702 | 0.8644 | 0.9769 | |
|
| 0.0225 | 8.0 | 2208 | 0.1229 | 0.8511 | 0.9024 | 0.8760 | 0.9765 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|