SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Gonalb/flucold-ft-v1")
# Run inference
sentences = [
'QUESTION #2: How does the sneeze centre in the brainstem coordinate the actions involved in sneezing?',
'causes sneezing.23 The trigeminal nerves relay\ninformation to the sneeze centre in the brainstem and\ncause reflex activation of motor and parasympathetic\nbranches of the facial nerve and activate respiratory\nmuscles. A model of the sneeze reflex is illustrated in\nfigure 1. The sneeze centre coordinates the inspiratory\nand expiratory actions of sneezing via respiratory\nmuscles, and lacrimation and nasal congestion via\nparasympathetic branches of the facial nerve. The eyes\nare always closed during sneezing by activation of facial\nmuscles, indicating a close relation between the',
'stroke, seizure disorder, dementia)\nAsthma or other chronic pulmonary disease\nChronic kidney disease\nChronic liver disease\nHeart disease (acquired or congenital)\nImmunosuppression (e.g., HIV infection, cancer, transplant \nrecipients, use of immunosuppressive medications)\nLong-term aspirin therapy in patients younger than 19 years\nMetabolic disorders (acquired [e.g., diabetes mellitus] or \ninherited [e.g., mitochondrial disorders])\nMorbid obesity\nSickle cell anemia and other hemoglobinopathies\nSpecial groups\nAdults 65 years and older\nAmerican Indians and Alaska Natives',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6122 |
cosine_accuracy@3 | 0.8878 |
cosine_accuracy@5 | 0.9388 |
cosine_accuracy@10 | 0.9898 |
cosine_precision@1 | 0.6122 |
cosine_precision@3 | 0.2959 |
cosine_precision@5 | 0.1878 |
cosine_precision@10 | 0.099 |
cosine_recall@1 | 0.6122 |
cosine_recall@3 | 0.8878 |
cosine_recall@5 | 0.9388 |
cosine_recall@10 | 0.9898 |
cosine_ndcg@10 | 0.8165 |
cosine_mrr@10 | 0.7593 |
cosine_map@100 | 0.76 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 400 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 400 samples:
sentence_0 sentence_1 type string string details - min: 14 tokens
- mean: 24.87 tokens
- max: 53 tokens
- min: 44 tokens
- mean: 129.25 tokens
- max: 188 tokens
- Samples:
sentence_0 sentence_1 What is the recommended age for annual influenza vaccination according to the context?
recommend annual influenza vaccination for all people six
months and older who do not have contraindications. 15,16
Vaccination efforts should target people at increased risk of
complicated or severe influenza (Table 117-19) and those who
care for or live with high-risk individuals, including health
care professionals. 15 Two previous FPM articles provided
communication strategies and tools for increasing influenza
vaccination rates in practice. 20,21
Multiple formulations of the influenza vaccine are avail -
able, including inactivated influenza vaccines (IIV); a recom-Who should vaccination efforts specifically target to prevent complicated or severe influenza?
recommend annual influenza vaccination for all people six
months and older who do not have contraindications. 15,16
Vaccination efforts should target people at increased risk of
complicated or severe influenza (Table 117-19) and those who
care for or live with high-risk individuals, including health
care professionals. 15 Two previous FPM articles provided
communication strategies and tools for increasing influenza
vaccination rates in practice. 20,21
Multiple formulations of the influenza vaccine are avail -
able, including inactivated influenza vaccines (IIV); a recom-What types of studies were included in the search regarding influenza complications and treatment?
enza complications American Indians, influenza treatment, and
influenza universal vaccine. The search included meta-analyses,
randomized controlled trials, clinical trials, and reviews. Search
dates: December 1, 2018, to October 5, 2019.
The Authors
DAVID Y. GAITONDE, MD, is a core clinical faculty member
and chief of endocrinology service at Dwight D. Eisenhower
Army Medical Center, Fort Gordon, Ga.
CPT. FAITH C. MOORE, USA, MC, is a resident in the Depart -
ment of Internal Medicine at Dwight D. Eisenhower Army
Medical Center.
MAJ. MACKENZIE K. MORGAN, USA, MC, is chief of infec- - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_ndcg@10 |
---|---|---|
1.0 | 40 | 0.8359 |
1.25 | 50 | 0.8312 |
2.0 | 80 | 0.8304 |
2.5 | 100 | 0.8156 |
3.0 | 120 | 0.8016 |
3.75 | 150 | 0.7952 |
4.0 | 160 | 0.7880 |
5.0 | 200 | 0.8021 |
6.0 | 240 | 0.8215 |
6.25 | 250 | 0.8286 |
7.0 | 280 | 0.8079 |
7.5 | 300 | 0.8043 |
8.0 | 320 | 0.8126 |
8.75 | 350 | 0.8099 |
9.0 | 360 | 0.8126 |
10.0 | 400 | 0.8165 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for Gonalb/flucold-ft-v1
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.612
- Cosine Accuracy@3 on Unknownself-reported0.888
- Cosine Accuracy@5 on Unknownself-reported0.939
- Cosine Accuracy@10 on Unknownself-reported0.990
- Cosine Precision@1 on Unknownself-reported0.612
- Cosine Precision@3 on Unknownself-reported0.296
- Cosine Precision@5 on Unknownself-reported0.188
- Cosine Precision@10 on Unknownself-reported0.099
- Cosine Recall@1 on Unknownself-reported0.612
- Cosine Recall@3 on Unknownself-reported0.888