StrangeMerges_48-7B-dare_ties
StrangeMerges_48-7B-dare_ties is a merge of the following models using LazyMergekit:
- Gille/StrangeMerges_46-7B-dare_ties
- AurelPx/Percival_01-7b-slerp
- Gille/StrangeMerges_47-7B-dare_ties
𧩠Configuration
models:
- model: Gille/StrangeMerges_46-7B-dare_ties
parameters:
weight: 0.4
density: 0.53
- model: AurelPx/Percival_01-7b-slerp
parameters:
weight: 0.4
density: 0.53
- model: Gille/StrangeMerges_47-7B-dare_ties
parameters:
weight: 0.2
density: 0.53
base_model: Locutusque/Hercules-4.0-Mistral-v0.2-7B
merge_method: dare_ties
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Gille/StrangeMerges_48-7B-dare_ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 57.89 |
AI2 Reasoning Challenge (25-Shot) | 60.92 |
HellaSwag (10-Shot) | 80.13 |
MMLU (5-Shot) | 49.51 |
TruthfulQA (0-shot) | 65.55 |
Winogrande (5-shot) | 75.85 |
GSM8k (5-shot) | 15.39 |
- Downloads last month
- 83
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Gille/StrangeMerges_48-7B-dare_ties
Merge model
this model
Spaces using Gille/StrangeMerges_48-7B-dare_ties 6
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard60.920
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard80.130
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard49.510
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard65.550
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard75.850
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard15.390