Self-Adjust Softmax - EMNLP 2025 Main Conference
Collection
The checkpoint for [Self-Adjust Softmax](https://arxiv.org/abs/2502.18277)
•
1 item
•
Updated
Please refer to the SA paper and our GitHub repository
for using this model.
To use the checkpoint of this model, you must install the transformers-4.38.0.post1+sepllm-py3-none-any.whl
released from our GitHub repository
. Below are the reference script for testing and a sample of test results. We conducted testing using lm_eval==0.4.0
.
CUDA_LAUNCH_BLOCKING=1
lm_eval --model hf \
--model_args pretrained=Gausson/gpt-neox-125m-deduped-SA \
--tasks arc_challenge,arc_easy,lambada_openai,logiqa,piqa,sciq,winogrande,wsc,wikitext \
--num_fewshot 5 \
--device cuda:0\
--batch_size 32
hf (pretrained=Gausson/gpt-neox-125m-deduped-SA), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 32
| Tasks |Version|Filter|n-shot| Metric | | Value | |Stderr|
|--------------|------:|------|-----:|---------------|---|-------:|---|------|
|arc_challenge | 1|none | 5|acc |↑ | 0.2022|± |0.0117|
| | |none | 5|acc_norm |↑ | 0.2483|± |0.0126|
|arc_easy | 1|none | 5|acc |↑ | 0.4920|± |0.0103|
| | |none | 5|acc_norm |↑ | 0.4672|± |0.0102|
|lambada_openai| 1|none | 5|acc |↑ | 0.3313|± |0.0066|
| | |none | 5|perplexity |↓ | 31.0203|± |1.0441|
|logiqa | 1|none | 5|acc |↑ | 0.2366|± |0.0167|
| | |none | 5|acc_norm |↑ | 0.2473|± |0.0169|
|piqa | 1|none | 5|acc |↑ | 0.6442|± |0.0112|
| | |none | 5|acc_norm |↑ | 0.6458|± |0.0112|
|sciq | 1|none | 5|acc |↑ | 0.8210|± |0.0121|
| | |none | 5|acc_norm |↑ | 0.7960|± |0.0127|
|wikitext | 2|none | 5|bits_per_byte |↓ | 1.2551|± | N/A|
| | |none | 5|byte_perplexity|↓ | 2.3868|± | N/A|
| | |none | 5|word_perplexity|↓ |104.7921|± | N/A|
|winogrande | 1|none | 5|acc |↑ | 0.5170|± |0.0140|
|wsc | 1|none | 5|acc |↑ | 0.4519|± |0.0490|
If you find our work helpful, please consider giving us a star ⭐ @ our GitHub repository
and citing our paper. We greatly appreciate your support 😄
@inproceedings{chen2025sepllm,
title={{SepLLM: Accelerate Large Language Models by Compressing One Segment into One Separator}},
author={Chen, Guoxuan and Shi, Han and Li, Jiawei and Gao, Yihang and Ren, Xiaozhe and Chen, Yimeng and Jiang, Xin and Li, Zhenguo and Liu, Weiyang and Huang, Chao},
booktitle={International Conference on Machine Learning},
year={2025},
note={Also available at arXiv:2412.12094}
}
@article{zheng2025selfadjust,
title={Self-Adjust Softmax},
author={Chuanyang Zheng and Yihang Gao and Guoxuan Chen and Han Shi and Jing Xiong and Xiaozhe Ren and Chao Huang and Xin Jiang and Zhenguo Li and Yu Li},
year={2025},
eprint={2502.18277},
archivePrefix={arXiv},
primaryClass={cs.CL}
}