Apollo-MoE-0.5B / README.md
BossRui's picture
Update README.md
68ea5a3 verified
|
raw
history blame
9.43 kB
metadata
license: apache-2.0
datasets:
  - FreedomIntelligence/ApolloMoEDataset
language:
  - ar
  - en
  - zh
  - ko
  - ja
  - mn
  - th
  - vi
  - lo
  - mg
  - de
  - pt
  - es
  - fr
  - ru
  - it
  - hr
  - gl
  - cs
  - co
  - la
  - uk
  - bs
  - bg
  - eo
  - sq
  - da
  - sa
  - gn
  - sr
  - sk
  - gd
  - lb
  - hi
  - ku
  - mt
  - he
  - ln
  - bm
  - sw
  - ig
  - rw
  - ha
metrics:
  - accuracy
base_model:
  - Qwen/Qwen2-0.5B
pipeline_tag: question-answering
tags:
  - biology
  - medical

Democratizing Medical LLMs For Much More Languages

Covering 12 Major Languages including English, Chinese, French, Hindi, Spanish, Arabic, Russian, Japanese, Korean, German, Italian, Portuguese and 38 Minor Languages So far.

📃 Paper • 🌐 Demo • 🤗 ApolloMoEDataset • 🤗 ApolloMoEBench • 🤗 Models •🌐 Apollo • 🌐 ApolloMoE

Apollo

🌈 Update

  • [2024.10.15] ApolloMoE repo is published!🎉

Languages Coverage

12 Major Languages and 38 Minor Languages

Click to view the Languages Coverage

ApolloMoE

Architecture

Click to view the MoE routing image

ApolloMoE

Results

Dense

🤗 Apollo2-0.5B • 🤗 Apollo2-1.5B • 🤗 Apollo2-2B

🤗 Apollo2-3.8B • 🤗 Apollo2-7B • 🤗 Apollo2-9B

Click to view the Dense Models Results

ApolloMoE

Post-MoE

🤗 Apollo-MoE-0.5B • 🤗 Apollo-MoE-1.5B • 🤗 Apollo-MoE-7B

Click to view the Post-MoE Models Results

ApolloMoE

Usage Format

Apollo2
  • 0.5B, 1.5B, 7B: User:{query}\nAssistant:{response}<|endoftext|>
  • 2B, 9B: User:{query}\nAssistant:{response}<eos>
  • 3.8B: <|user|>\n{query}<|end|><|assisitant|>\n{response}<|end|>
Apollo-MoE
  • 0.5B, 1.5B, 7B: User:{query}\nAssistant:{response}<|endoftext|>

Dataset & Evaluation

  • Dataset 🤗 ApolloMoEDataset

    Click to expand

    ApolloMoE

  • Evaluation 🤗 ApolloMoEBench

    Click to expand
    • EN:

      • MedQA-USMLE
      • MedMCQA
      • PubMedQA: Because the results fluctuated too much, they were not used in the paper.
      • MMLU-Medical
        • Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
    • ZH:

      • MedQA-MCMLE
      • CMB-single: Not used in the paper
        • Randomly sample 2,000 multiple-choice questions with single answer.
      • CMMLU-Medical
        • Anatomy, Clinical_knowledge, College_medicine, Genetics, Nutrition, Traditional_chinese_medicine, Virology
      • CExam: Not used in the paper
        • Randomly sample 2,000 multiple-choice questions
    • ES: Head_qa

    • FR:

      • Frenchmedmcqa
      • [MMLU_FR]
        • Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
    • HI: MMLU_HI

      • Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
    • AR: MMLU_AR

      • Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
    • JA: IgakuQA

    • KO: KorMedMCQA

    • IT:

      • MedExpQA
      • [MMLU_IT]
        • Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
    • DE: BioInstructQA: German part

    • PT: BioInstructQA: Portuguese part

    • RU: RuMedBench

Model Download and Inference

We take Apollo-MoE-0.5B as example

  1. Login Hugginface

    huggingface-cli login --token $HUGGINGFACE_TOKEN
    
  2. Download model to local dir

    from huggingface_hub import snapshot_download
    import os
    
    local_model_dir=os.path.join('/path/to/models/dir','Apollo-MoE-0.5B')
    snapshot_download(repo_id="FreedomIntelligence/Apollo-MoE-0.5B", local_dir=local_model_dir)
    
  3. Inference Example

    from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
    import os
    
    local_model_dir=os.path.join('/path/to/models/dir','Apollo-MoE-0.5B')
    
    model=AutoModelForCausalLM.from_pretrained(local_model_dir,trust_remote_code=True)
    tokenizer = AutoTokenizer.from_pretrained(local_model_dir,trust_remote_code=True)
    generation_config = GenerationConfig.from_pretrained(local_model_dir, pad_token_id=tokenizer.pad_token_id, num_return_sequences=1, max_new_tokens=7, min_new_tokens=2, do_sample=False, temperature=1.0, top_k=50, top_p=1.0)
    
    inputs = tokenizer('直接回答\n蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n澳大利亚的首都是', return_tensors='pt')
    inputs = inputs.to(model.device)
    pred = model.generate(**inputs,generation_config=generation_config)
    print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
    

Results reproduction

Click to expand

We take Apollo2-7B or Apollo-MoE-0.5B as example

  1. Download Dataset for project:

    bash 0.download_data.sh  
    
  2. Prepare test and dev data for specific model:

    • Create test data for with special token
    bash 1.data_process_test&dev.sh
    
  3. Prepare train data for specific model (Create tokenized data in advance):

    • You can adjust data Training order and Training Epoch in this step
    bash 2.data_process_train.sh
    
  4. Train the model

    • If you want to train in Multi Nodes please refer to ./src/sft/training_config/zero_multi.yaml
    bash 3.single_node_train.sh
    
  5. Evaluate your model: Generate score for benchmark

    bash 4.eval.sh
    

Citation

Please use the following citation if you intend to use our dataset for training or evaluation:

@misc{zheng2024efficientlydemocratizingmedicalllms,
      title={Efficiently Democratizing Medical LLMs for 50 Languages via a Mixture of Language Family Experts}, 
      author={Guorui Zheng and Xidong Wang and Juhao Liang and Nuo Chen and Yuping Zheng and Benyou Wang},
      year={2024},
      eprint={2410.10626},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2410.10626}, 
}