SetFit with TurkuNLP/bert-base-finnish-cased-v1

This is a SetFit model that can be used for Text Classification. This SetFit model uses TurkuNLP/bert-base-finnish-cased-v1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'Etunimi Sukunimi herra senkun aloittaa keräyksen♥️'
  • 'Etunimi Sukunimi venäjän syy hintojen nousu vai syytätkö sodastakin Suomen hallitusta ? 😖'
  • 'Etunimi Sukunimi Olikhaan se virve'
1
  • 'Etunimi Sukunimi onneks sentään ryyppäämään pääsee, eikä tule siihen ikäviä taukoja'
  • 'Etunimi Sukunimi Juurikin näin 👍👍👍👍'
  • 'Etunimi Oinonen-Matikkala, sama tunne jäi. Viisaita, pohdittuja sanoja.'

Evaluation

Metrics

Label Metric
all 0.9622

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Finnish-actions/SetFit-FinBERT1-A2-appreciation")
# Run inference
preds = model("Etunimi Sukunimi 🙋‍♀️")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 20.3115 213
Label Training Sample Count
0 934
1 29

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (4, 4)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 6
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • evaluation_strategy: epoch
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0014 1 0.2634 -
0.0692 50 0.2672 -
0.1383 100 0.2311 -
0.2075 150 0.1393 -
0.2766 200 0.0183 -
0.3458 250 0.0122 -
0.4149 300 0.0096 -
0.4841 350 0.0136 -
0.5533 400 0.0047 -
0.6224 450 0.0075 -
0.6916 500 0.0041 -
0.7607 550 0.0048 -
0.8299 600 0.0045 -
0.8990 650 0.0015 -
0.9682 700 0.0033 -
1.0 723 - 0.3577
1.0373 750 0.002 -
1.1065 800 0.0055 -
1.1757 850 0.0052 -
1.2448 900 0.0032 -
1.3140 950 0.004 -
1.3831 1000 0.0051 -
1.4523 1050 0.0067 -
1.5214 1100 0.0036 -
1.5906 1150 0.0013 -
1.6598 1200 0.0047 -
1.7289 1250 0.0062 -
1.7981 1300 0.0022 -
1.8672 1350 0.0066 -
1.9364 1400 0.0044 -
2.0 1446 - 0.3291
2.0055 1450 0.0037 -
2.0747 1500 0.0037 -
2.1438 1550 0.003 -
2.2130 1600 0.0004 -
2.2822 1650 0.0042 -
2.3513 1700 0.0016 -
2.4205 1750 0.0033 -
2.4896 1800 0.0034 -
2.5588 1850 0.004 -
2.6279 1900 0.0023 -
2.6971 1950 0.006 -
2.7663 2000 0.0014 -
2.8354 2050 0.0039 -
2.9046 2100 0.0051 -
2.9737 2150 0.0038 -
3.0 2169 - 0.3276
3.0429 2200 0.0024 -
3.1120 2250 0.0022 -
3.1812 2300 0.0022 -
3.2503 2350 0.0032 -
3.3195 2400 0.003 -
3.3887 2450 0.0024 -
3.4578 2500 0.0039 -
3.5270 2550 0.0048 -
3.5961 2600 0.0048 -
3.6653 2650 0.0045 -
3.7344 2700 0.0039 -
3.8036 2750 0.0022 -
3.8728 2800 0.0031 -
3.9419 2850 0.0019 -
4.0 2892 - 0.3279

Framework Versions

  • Python: 3.11.9
  • SetFit: 1.1.3
  • Sentence Transformers: 3.2.0
  • Transformers: 4.44.0
  • PyTorch: 2.4.0+cu124
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
19
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Finnish-actions/SetFit-FinBERT1-A2-appreciation

Finetuned
(34)
this model

Evaluation results