Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: auto
dataset_prepared_path: null
datasets:
- data_files:
  - 882551bf31b1c386_train_data.json
  ds_type: json
  format: custom
  path: 882551bf31b1c386_train_data.json
  type:
    field: null
    field_input: mt_text
    field_instruction: src_text
    field_output: pe_text
    field_system: null
    format: null
    no_input_format: null
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: null
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: FatCat87/taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 2
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out/taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40
pad_to_sequence_len: null
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 1
seed: 94450
sequence_len: 2048
special_tokens: null
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: fatcat87-taopanda
wandb_log_model: null
wandb_mode: online
wandb_name: taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40
wandb_project: subnet56
wandb_runid: taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

Visualize in Weights & Biases

taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40

This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5110

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 94450
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.4194 0.0043 1 1.3981
0.5997 0.2513 59 0.5785
0.4492 0.5027 118 0.5327
0.6569 0.7540 177 0.5110

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
15
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for FatCat87/taopanda-2_fd21683e-d9f5-4409-ad86-74038599ad40