detr_finetuned_crack
This model is a fine-tuned version of facebook/detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5449
- Map: 0.6418
- Map 50: 0.7915
- Map 75: 0.7168
- Map Small: -1.0
- Map Medium: 0.2381
- Map Large: 0.6629
- Mar 1: 0.6742
- Mar 10: 0.7806
- Mar 100: 0.8234
- Mar Small: -1.0
- Mar Medium: 0.4366
- Mar Large: 0.8433
- Map Excavators: 0.5862
- Mar 100 Excavators: 0.7611
- Map Dump truck: 0.5746
- Mar 100 Dump truck: 0.8057
- Map Wheel loader: 0.7646
- Mar 100 Wheel loader: 0.9034
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Excavators | Mar 100 Excavators | Map Dump truck | Mar 100 Dump truck | Map Wheel loader | Mar 100 Wheel loader |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 281 | 1.0910 | 0.0675 | 0.0965 | 0.0697 | -1.0 | 0.0088 | 0.0687 | 0.2623 | 0.3621 | 0.443 | -1.0 | 0.1473 | 0.4477 | 0.0031 | 0.725 | 0.0093 | 0.0316 | 0.1901 | 0.5725 |
1.4507 | 2.0 | 562 | 1.1622 | 0.0534 | 0.0786 | 0.0578 | -1.0 | 0.0075 | 0.0562 | 0.2759 | 0.4458 | 0.5215 | -1.0 | 0.171 | 0.5358 | 0.0202 | 0.6833 | 0.0217 | 0.1863 | 0.1183 | 0.6949 |
1.4507 | 3.0 | 843 | 1.0275 | 0.0951 | 0.1463 | 0.1031 | -1.0 | 0.0221 | 0.0987 | 0.3498 | 0.5405 | 0.5917 | -1.0 | 0.2462 | 0.6085 | 0.0165 | 0.6694 | 0.0553 | 0.4618 | 0.2137 | 0.6438 |
1.161 | 4.0 | 1124 | 0.9637 | 0.121 | 0.1918 | 0.1295 | -1.0 | 0.0722 | 0.1262 | 0.346 | 0.5476 | 0.6155 | -1.0 | 0.2484 | 0.6319 | 0.0348 | 0.6694 | 0.1051 | 0.5472 | 0.2232 | 0.6298 |
1.161 | 5.0 | 1405 | 0.9838 | 0.194 | 0.281 | 0.2154 | -1.0 | 0.0928 | 0.2002 | 0.357 | 0.5473 | 0.6138 | -1.0 | 0.2452 | 0.6349 | 0.0732 | 0.5694 | 0.1145 | 0.6344 | 0.3943 | 0.6376 |
1.0777 | 6.0 | 1686 | 0.8650 | 0.1749 | 0.2471 | 0.1864 | -1.0 | 0.045 | 0.1809 | 0.3767 | 0.5929 | 0.6321 | -1.0 | 0.3409 | 0.6453 | 0.0471 | 0.7167 | 0.1307 | 0.5943 | 0.3471 | 0.5854 |
1.0777 | 7.0 | 1967 | 0.8570 | 0.2141 | 0.3026 | 0.2334 | -1.0 | 0.0597 | 0.2216 | 0.427 | 0.6198 | 0.6745 | -1.0 | 0.2097 | 0.6969 | 0.0939 | 0.7333 | 0.1681 | 0.6047 | 0.3804 | 0.6854 |
0.9398 | 8.0 | 2248 | 0.8859 | 0.235 | 0.3369 | 0.263 | -1.0 | 0.051 | 0.2437 | 0.4363 | 0.6268 | 0.6766 | -1.0 | 0.2032 | 0.702 | 0.0781 | 0.7444 | 0.195 | 0.6392 | 0.432 | 0.6461 |
0.9071 | 9.0 | 2529 | 0.8624 | 0.2717 | 0.3767 | 0.2971 | -1.0 | 0.0777 | 0.2799 | 0.4334 | 0.6353 | 0.686 | -1.0 | 0.2817 | 0.7097 | 0.1124 | 0.7111 | 0.1975 | 0.6807 | 0.5051 | 0.6663 |
0.9071 | 10.0 | 2810 | 0.8125 | 0.2909 | 0.4088 | 0.319 | -1.0 | 0.0819 | 0.3025 | 0.4565 | 0.6765 | 0.7364 | -1.0 | 0.2871 | 0.7598 | 0.1564 | 0.7444 | 0.256 | 0.6788 | 0.4602 | 0.786 |
0.8684 | 11.0 | 3091 | 0.8008 | 0.316 | 0.4487 | 0.3468 | -1.0 | 0.0745 | 0.3293 | 0.514 | 0.6865 | 0.7411 | -1.0 | 0.2978 | 0.7657 | 0.1418 | 0.75 | 0.3531 | 0.7344 | 0.4532 | 0.7388 |
0.8684 | 12.0 | 3372 | 0.7206 | 0.4342 | 0.5671 | 0.497 | -1.0 | 0.079 | 0.4514 | 0.5547 | 0.7164 | 0.7681 | -1.0 | 0.3301 | 0.791 | 0.3193 | 0.7722 | 0.3754 | 0.709 | 0.608 | 0.823 |
0.78 | 13.0 | 3653 | 0.7023 | 0.4618 | 0.6017 | 0.5105 | -1.0 | 0.1418 | 0.476 | 0.5748 | 0.7181 | 0.7677 | -1.0 | 0.3226 | 0.7888 | 0.3582 | 0.7194 | 0.4087 | 0.7448 | 0.6184 | 0.8388 |
0.78 | 14.0 | 3934 | 0.7258 | 0.4705 | 0.6167 | 0.5385 | -1.0 | 0.1025 | 0.4905 | 0.56 | 0.7222 | 0.7683 | -1.0 | 0.2957 | 0.7934 | 0.3718 | 0.7667 | 0.4072 | 0.7292 | 0.6325 | 0.809 |
0.7291 | 15.0 | 4215 | 0.6475 | 0.5445 | 0.6874 | 0.6045 | -1.0 | 0.1298 | 0.5631 | 0.6157 | 0.7554 | 0.7923 | -1.0 | 0.3946 | 0.8105 | 0.4822 | 0.7944 | 0.4859 | 0.7297 | 0.6653 | 0.8528 |
0.7291 | 16.0 | 4496 | 0.6435 | 0.5295 | 0.6864 | 0.5916 | -1.0 | 0.2079 | 0.5513 | 0.6046 | 0.7587 | 0.8085 | -1.0 | 0.3796 | 0.8304 | 0.4483 | 0.825 | 0.4942 | 0.7448 | 0.646 | 0.8556 |
0.6889 | 17.0 | 4777 | 0.6242 | 0.5472 | 0.7106 | 0.6101 | -1.0 | 0.2103 | 0.5725 | 0.5937 | 0.7494 | 0.7918 | -1.0 | 0.3753 | 0.8117 | 0.4309 | 0.7139 | 0.5229 | 0.7981 | 0.6879 | 0.8635 |
0.6533 | 18.0 | 5058 | 0.6060 | 0.5599 | 0.709 | 0.6197 | -1.0 | 0.2911 | 0.5777 | 0.6189 | 0.7596 | 0.812 | -1.0 | 0.386 | 0.8342 | 0.456 | 0.7806 | 0.498 | 0.7745 | 0.7256 | 0.8809 |
0.6533 | 19.0 | 5339 | 0.5994 | 0.5746 | 0.7315 | 0.6344 | -1.0 | 0.2149 | 0.5975 | 0.6339 | 0.7738 | 0.8233 | -1.0 | 0.343 | 0.8486 | 0.528 | 0.8167 | 0.5155 | 0.7764 | 0.6802 | 0.877 |
0.6013 | 20.0 | 5620 | 0.5833 | 0.5954 | 0.7497 | 0.6819 | -1.0 | 0.1718 | 0.6159 | 0.6571 | 0.7775 | 0.822 | -1.0 | 0.3968 | 0.8431 | 0.5589 | 0.8056 | 0.4923 | 0.7835 | 0.7349 | 0.877 |
0.6013 | 21.0 | 5901 | 0.5769 | 0.5955 | 0.7525 | 0.655 | -1.0 | 0.2243 | 0.6168 | 0.6467 | 0.7715 | 0.8119 | -1.0 | 0.3237 | 0.836 | 0.5313 | 0.7583 | 0.5047 | 0.7925 | 0.7504 | 0.8848 |
0.5834 | 22.0 | 6182 | 0.5608 | 0.6182 | 0.7707 | 0.682 | -1.0 | 0.1805 | 0.6392 | 0.6563 | 0.7688 | 0.82 | -1.0 | 0.3559 | 0.8435 | 0.5668 | 0.7778 | 0.5376 | 0.7901 | 0.7503 | 0.8921 |
0.5834 | 23.0 | 6463 | 0.5485 | 0.6216 | 0.7747 | 0.6953 | -1.0 | 0.2656 | 0.642 | 0.648 | 0.7763 | 0.82 | -1.0 | 0.3634 | 0.8426 | 0.5768 | 0.7722 | 0.5549 | 0.7991 | 0.7331 | 0.8888 |
0.5381 | 24.0 | 6744 | 0.5530 | 0.6284 | 0.7704 | 0.6923 | -1.0 | 0.2638 | 0.6489 | 0.6524 | 0.7751 | 0.8182 | -1.0 | 0.4215 | 0.8396 | 0.5869 | 0.7917 | 0.5602 | 0.783 | 0.7381 | 0.8798 |
0.5242 | 25.0 | 7025 | 0.5509 | 0.6402 | 0.7853 | 0.7114 | -1.0 | 0.2367 | 0.6614 | 0.6736 | 0.7753 | 0.8223 | -1.0 | 0.4075 | 0.8424 | 0.5875 | 0.7639 | 0.5695 | 0.8042 | 0.7637 | 0.8989 |
0.5242 | 26.0 | 7306 | 0.5426 | 0.6385 | 0.7838 | 0.7124 | -1.0 | 0.2385 | 0.6599 | 0.6664 | 0.7851 | 0.826 | -1.0 | 0.4785 | 0.8442 | 0.5844 | 0.7639 | 0.5762 | 0.8179 | 0.755 | 0.8961 |
0.5163 | 27.0 | 7587 | 0.5446 | 0.6437 | 0.7904 | 0.7181 | -1.0 | 0.2359 | 0.6652 | 0.6763 | 0.7821 | 0.8275 | -1.0 | 0.4699 | 0.8469 | 0.5963 | 0.7694 | 0.5739 | 0.8108 | 0.761 | 0.9022 |
0.5163 | 28.0 | 7868 | 0.5456 | 0.6351 | 0.7869 | 0.7129 | -1.0 | 0.2361 | 0.6564 | 0.6707 | 0.7774 | 0.8238 | -1.0 | 0.4301 | 0.8448 | 0.573 | 0.7611 | 0.5677 | 0.8052 | 0.7646 | 0.9051 |
0.5082 | 29.0 | 8149 | 0.5452 | 0.6413 | 0.7913 | 0.7165 | -1.0 | 0.2387 | 0.6623 | 0.675 | 0.7795 | 0.8241 | -1.0 | 0.4419 | 0.8433 | 0.5846 | 0.7611 | 0.5759 | 0.8085 | 0.7634 | 0.9028 |
0.5082 | 30.0 | 8430 | 0.5449 | 0.6418 | 0.7915 | 0.7168 | -1.0 | 0.2381 | 0.6629 | 0.6742 | 0.7806 | 0.8234 | -1.0 | 0.4366 | 0.8433 | 0.5862 | 0.7611 | 0.5746 | 0.8057 | 0.7646 | 0.9034 |
Framework versions
- Transformers 4.55.4
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 46
Model tree for Fardan/detr_finetuned_crack
Base model
facebook/detr-resnet-50