detr_finetuned_crack

This model is a fine-tuned version of facebook/detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5449
  • Map: 0.6418
  • Map 50: 0.7915
  • Map 75: 0.7168
  • Map Small: -1.0
  • Map Medium: 0.2381
  • Map Large: 0.6629
  • Mar 1: 0.6742
  • Mar 10: 0.7806
  • Mar 100: 0.8234
  • Mar Small: -1.0
  • Mar Medium: 0.4366
  • Mar Large: 0.8433
  • Map Excavators: 0.5862
  • Mar 100 Excavators: 0.7611
  • Map Dump truck: 0.5746
  • Mar 100 Dump truck: 0.8057
  • Map Wheel loader: 0.7646
  • Mar 100 Wheel loader: 0.9034

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Excavators Mar 100 Excavators Map Dump truck Mar 100 Dump truck Map Wheel loader Mar 100 Wheel loader
No log 1.0 281 1.0910 0.0675 0.0965 0.0697 -1.0 0.0088 0.0687 0.2623 0.3621 0.443 -1.0 0.1473 0.4477 0.0031 0.725 0.0093 0.0316 0.1901 0.5725
1.4507 2.0 562 1.1622 0.0534 0.0786 0.0578 -1.0 0.0075 0.0562 0.2759 0.4458 0.5215 -1.0 0.171 0.5358 0.0202 0.6833 0.0217 0.1863 0.1183 0.6949
1.4507 3.0 843 1.0275 0.0951 0.1463 0.1031 -1.0 0.0221 0.0987 0.3498 0.5405 0.5917 -1.0 0.2462 0.6085 0.0165 0.6694 0.0553 0.4618 0.2137 0.6438
1.161 4.0 1124 0.9637 0.121 0.1918 0.1295 -1.0 0.0722 0.1262 0.346 0.5476 0.6155 -1.0 0.2484 0.6319 0.0348 0.6694 0.1051 0.5472 0.2232 0.6298
1.161 5.0 1405 0.9838 0.194 0.281 0.2154 -1.0 0.0928 0.2002 0.357 0.5473 0.6138 -1.0 0.2452 0.6349 0.0732 0.5694 0.1145 0.6344 0.3943 0.6376
1.0777 6.0 1686 0.8650 0.1749 0.2471 0.1864 -1.0 0.045 0.1809 0.3767 0.5929 0.6321 -1.0 0.3409 0.6453 0.0471 0.7167 0.1307 0.5943 0.3471 0.5854
1.0777 7.0 1967 0.8570 0.2141 0.3026 0.2334 -1.0 0.0597 0.2216 0.427 0.6198 0.6745 -1.0 0.2097 0.6969 0.0939 0.7333 0.1681 0.6047 0.3804 0.6854
0.9398 8.0 2248 0.8859 0.235 0.3369 0.263 -1.0 0.051 0.2437 0.4363 0.6268 0.6766 -1.0 0.2032 0.702 0.0781 0.7444 0.195 0.6392 0.432 0.6461
0.9071 9.0 2529 0.8624 0.2717 0.3767 0.2971 -1.0 0.0777 0.2799 0.4334 0.6353 0.686 -1.0 0.2817 0.7097 0.1124 0.7111 0.1975 0.6807 0.5051 0.6663
0.9071 10.0 2810 0.8125 0.2909 0.4088 0.319 -1.0 0.0819 0.3025 0.4565 0.6765 0.7364 -1.0 0.2871 0.7598 0.1564 0.7444 0.256 0.6788 0.4602 0.786
0.8684 11.0 3091 0.8008 0.316 0.4487 0.3468 -1.0 0.0745 0.3293 0.514 0.6865 0.7411 -1.0 0.2978 0.7657 0.1418 0.75 0.3531 0.7344 0.4532 0.7388
0.8684 12.0 3372 0.7206 0.4342 0.5671 0.497 -1.0 0.079 0.4514 0.5547 0.7164 0.7681 -1.0 0.3301 0.791 0.3193 0.7722 0.3754 0.709 0.608 0.823
0.78 13.0 3653 0.7023 0.4618 0.6017 0.5105 -1.0 0.1418 0.476 0.5748 0.7181 0.7677 -1.0 0.3226 0.7888 0.3582 0.7194 0.4087 0.7448 0.6184 0.8388
0.78 14.0 3934 0.7258 0.4705 0.6167 0.5385 -1.0 0.1025 0.4905 0.56 0.7222 0.7683 -1.0 0.2957 0.7934 0.3718 0.7667 0.4072 0.7292 0.6325 0.809
0.7291 15.0 4215 0.6475 0.5445 0.6874 0.6045 -1.0 0.1298 0.5631 0.6157 0.7554 0.7923 -1.0 0.3946 0.8105 0.4822 0.7944 0.4859 0.7297 0.6653 0.8528
0.7291 16.0 4496 0.6435 0.5295 0.6864 0.5916 -1.0 0.2079 0.5513 0.6046 0.7587 0.8085 -1.0 0.3796 0.8304 0.4483 0.825 0.4942 0.7448 0.646 0.8556
0.6889 17.0 4777 0.6242 0.5472 0.7106 0.6101 -1.0 0.2103 0.5725 0.5937 0.7494 0.7918 -1.0 0.3753 0.8117 0.4309 0.7139 0.5229 0.7981 0.6879 0.8635
0.6533 18.0 5058 0.6060 0.5599 0.709 0.6197 -1.0 0.2911 0.5777 0.6189 0.7596 0.812 -1.0 0.386 0.8342 0.456 0.7806 0.498 0.7745 0.7256 0.8809
0.6533 19.0 5339 0.5994 0.5746 0.7315 0.6344 -1.0 0.2149 0.5975 0.6339 0.7738 0.8233 -1.0 0.343 0.8486 0.528 0.8167 0.5155 0.7764 0.6802 0.877
0.6013 20.0 5620 0.5833 0.5954 0.7497 0.6819 -1.0 0.1718 0.6159 0.6571 0.7775 0.822 -1.0 0.3968 0.8431 0.5589 0.8056 0.4923 0.7835 0.7349 0.877
0.6013 21.0 5901 0.5769 0.5955 0.7525 0.655 -1.0 0.2243 0.6168 0.6467 0.7715 0.8119 -1.0 0.3237 0.836 0.5313 0.7583 0.5047 0.7925 0.7504 0.8848
0.5834 22.0 6182 0.5608 0.6182 0.7707 0.682 -1.0 0.1805 0.6392 0.6563 0.7688 0.82 -1.0 0.3559 0.8435 0.5668 0.7778 0.5376 0.7901 0.7503 0.8921
0.5834 23.0 6463 0.5485 0.6216 0.7747 0.6953 -1.0 0.2656 0.642 0.648 0.7763 0.82 -1.0 0.3634 0.8426 0.5768 0.7722 0.5549 0.7991 0.7331 0.8888
0.5381 24.0 6744 0.5530 0.6284 0.7704 0.6923 -1.0 0.2638 0.6489 0.6524 0.7751 0.8182 -1.0 0.4215 0.8396 0.5869 0.7917 0.5602 0.783 0.7381 0.8798
0.5242 25.0 7025 0.5509 0.6402 0.7853 0.7114 -1.0 0.2367 0.6614 0.6736 0.7753 0.8223 -1.0 0.4075 0.8424 0.5875 0.7639 0.5695 0.8042 0.7637 0.8989
0.5242 26.0 7306 0.5426 0.6385 0.7838 0.7124 -1.0 0.2385 0.6599 0.6664 0.7851 0.826 -1.0 0.4785 0.8442 0.5844 0.7639 0.5762 0.8179 0.755 0.8961
0.5163 27.0 7587 0.5446 0.6437 0.7904 0.7181 -1.0 0.2359 0.6652 0.6763 0.7821 0.8275 -1.0 0.4699 0.8469 0.5963 0.7694 0.5739 0.8108 0.761 0.9022
0.5163 28.0 7868 0.5456 0.6351 0.7869 0.7129 -1.0 0.2361 0.6564 0.6707 0.7774 0.8238 -1.0 0.4301 0.8448 0.573 0.7611 0.5677 0.8052 0.7646 0.9051
0.5082 29.0 8149 0.5452 0.6413 0.7913 0.7165 -1.0 0.2387 0.6623 0.675 0.7795 0.8241 -1.0 0.4419 0.8433 0.5846 0.7611 0.5759 0.8085 0.7634 0.9028
0.5082 30.0 8430 0.5449 0.6418 0.7915 0.7168 -1.0 0.2381 0.6629 0.6742 0.7806 0.8234 -1.0 0.4366 0.8433 0.5862 0.7611 0.5746 0.8057 0.7646 0.9034

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
46
Safetensors
Model size
41.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Fardan/detr_finetuned_crack

Finetuned
(578)
this model