This model was converted to OpenVINO from OuteAI/Lite-Oute-1-300M-Instruct
using optimum-intel
via the export space.
Lite-Oute-1-300M-Instruct
Lite-Oute-1-300M-Instruct is a Lite series model based on the Mistral architecture, comprising approximately 300 million parameters.
This model aims to improve upon our previous 150M version by increasing size and training on a more refined dataset. The primary goal of this 300 million parameter model is to offer enhanced performance while still maintaining efficiency for deployment on a variety of devices.
With its larger size, it should provide improved context retention and coherence, however users should note that as a compact model, it still have limitations compared to larger language models.
The model was trained on 30 billion tokens with a context length of 4096.
Available versions:
Lite-Oute-1-300M-Instruct
Lite-Oute-1-300M-Instruct-GGUF
Lite-Oute-1-300M
Lite-Oute-1-300M-GGUF
Chat format
This model uses ChatML template. Ensure you use the correct template:
<|im_start|>system
[System message]<|im_end|>
<|im_start|>user
[Your question or message]<|im_end|>
<|im_start|>assistant
[The model's response]<|im_end|>
Benchmarks:
Benchmark | 5-shot | 0-shot |
---|---|---|
ARC Challenge | 26.37 | 26.02 |
ARC Easy | 51.43 | 49.79 |
CommonsenseQA | 20.72 | 20.31 |
HellaSWAG | 34.93 | 34.50 |
MMLU | 25.87 | 24.00 |
OpenBookQA | 31.40 | 32.20 |
PIQA | 65.07 | 65.40 |
Winogrande | 52.01 | 53.75 |
First make sure you have optimum-intel installed:
pip install optimum[openvino]
To load your model you can do as follows:
from optimum.intel import OVModelForCausalLM
model_id = "FM-1976/Lite-Oute-1-300M-Instruct-openvino"
model = OVModelForCausalLM.from_pretrained(model_id)
- Downloads last month
- 23
Model tree for FM-1976/Lite-Oute-1-300M-Instruct-openvino
Base model
OuteAI/Lite-Oute-1-300M-Instruct