File size: 18,825 Bytes
05b1349
 
 
 
 
 
 
 
 
 
0cd49c5
05b1349
 
 
 
 
 
 
 
 
 
 
 
 
e98cd0b
 
 
 
05b1349
e98cd0b
0cd49c5
e98cd0b
 
05b1349
 
 
 
 
 
 
 
 
 
e98cd0b
05b1349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e98cd0b
05b1349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd49c5
05b1349
 
0cd49c5
05b1349
 
 
 
 
 
 
 
 
 
 
 
 
e98cd0b
05b1349
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd49c5
 
 
05b1349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd49c5
05b1349
 
0cd49c5
05b1349
 
 
 
 
 
 
 
 
 
 
 
 
 
e98cd0b
05b1349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd49c5
 
05b1349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e98cd0b
05b1349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd49c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
import random
from typing import List, Tuple

import paged_attention as ops
import pytest
import torch
from paged_attention.platforms import current_platform

from .utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck

COPYING_DIRECTION = [("gpu", "cpu"), ("gpu", "gpu"), ("cpu", "gpu")]
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [42]  # Arbitrary values for testing
NUM_LAYERS = [1]  # Arbitrary values for testing
NUM_HEADS = [8]  # Arbitrary values for testing
HEAD_SIZES = [64, 80, 120, 256]
BLOCK_SIZES = [8, 16, 32]

# Arbitrary values for testing
# don't make it too large. e.g. [1024, 36000] will OOM
NUM_BLOCKS = [1024, 10000]

NUM_MAPPINGS = [256]  # Arbitrary values for testing
SEEDS = [0]
if current_platform.is_mps():
    DEVICES = ["mps:0"]
else:
    DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]

if current_platform.is_mps():
    KV_CACHE_DTYPE = ["auto", "fp8"]
else:
    KV_CACHE_DTYPE = ["auto", "fp8"]


@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
@pytest.mark.parametrize("num_layers", NUM_LAYERS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_copy_blocks(
    kv_cache_factory,
    num_mappings: int,
    num_layers: int,
    num_heads: int,
    head_size: int,
    block_size: int,
    num_blocks: int,
    dtype: torch.dtype,
    seed: int,
    kv_cache_dtype: str,
    device: str,
) -> None:
    if kv_cache_dtype == "fp8" and head_size % 16:
        pytest.skip()
    current_platform.seed_everything(seed)
    torch.set_default_device(device)
    # Generate random block mappings where each source block is mapped to two
    # destination blocks.
    assert 2 * num_mappings <= num_blocks
    src_blocks = random.sample(range(num_blocks), num_mappings)
    remainig_blocks = list(set(range(num_blocks)) - set(src_blocks))
    dst_blocks = random.sample(remainig_blocks, 2 * num_mappings)
    block_mapping: List[Tuple[int, int]] = []
    for i in range(num_mappings):
        src = src_blocks[i]
        dst1 = dst_blocks[2 * i]
        dst2 = dst_blocks[2 * i + 1]
        block_mapping.append((src, dst1))
        block_mapping.append((src, dst2))

    # Create the KV caches.
    key_caches, value_caches = kv_cache_factory(
        num_blocks,
        block_size,
        num_layers,
        num_heads,
        head_size,
        kv_cache_dtype,
        dtype,
        seed,
        device,
    )

    # Clone the KV caches.
    cloned_key_caches = [key_cache.clone() for key_cache in key_caches]
    cloned_value_caches = [value_cache.clone() for value_cache in value_caches]

    # Call the copy blocks kernel.
    block_mapping_tensor = torch.tensor(
        block_mapping, dtype=torch.int64, device=device
    ).view(-1, 2)

    opcheck(
        ops.ops.copy_blocks,
        (key_caches, value_caches, block_mapping_tensor),
        test_utils=DEFAULT_OPCHECK_TEST_UTILS,
        cond=(head_size == HEAD_SIZES[0]),
    )
    ops.copy_blocks(key_caches, value_caches, block_mapping_tensor)

    # Run the reference implementation.
    for src, dst in block_mapping:
        for cloned_key_cache in cloned_key_caches:
            cloned_key_cache[dst].copy_(cloned_key_cache[src])
        for cloned_value_cache in cloned_value_caches:
            cloned_value_cache[dst].copy_(cloned_value_cache[src])

    # Compare the results.
    for key_cache, cloned_key_cache in zip(key_caches, cloned_key_caches):
        torch.testing.assert_close(key_cache, cloned_key_cache)
    for value_cache, cloned_value_cache in zip(value_caches, cloned_value_caches):
        torch.testing.assert_close(value_cache, cloned_value_cache)


@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_reshape_and_cache(
    kv_cache_factory,
    num_tokens: int,
    num_heads: int,
    head_size: int,
    block_size: int,
    num_blocks: int,
    dtype: torch.dtype,
    seed: int,
    device: str,
    kv_cache_dtype: str,
) -> None:
    if kv_cache_dtype == "fp8" and head_size % 16:
        pytest.skip()
    current_platform.seed_everything(seed)
    torch.set_default_device(device)
    # Create a random slot mapping.
    num_slots = block_size * num_blocks
    slot_mapping_lst = random.sample(range(num_slots), num_tokens)
    slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long)

    qkv = torch.randn(num_tokens, 3, num_heads, head_size, dtype=dtype)
    _, key, value = qkv.unbind(dim=1)

    # Create the KV caches.
    key_caches, value_caches = kv_cache_factory(
        num_blocks,
        block_size,
        1,
        num_heads,
        head_size,
        kv_cache_dtype,
        dtype,
        seed,
        device,
    )
    key_cache, value_cache = key_caches[0], value_caches[0]

    # Clone the KV caches.
    if kv_cache_dtype == "fp8":
        cloned_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
        ops.convert_fp8(cloned_key_cache, key_cache)
        cloned_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
        ops.convert_fp8(cloned_value_cache, value_cache)
    else:
        cloned_key_cache = key_cache.clone()
        cloned_value_cache = value_cache.clone()

    # Using default kv_scale
    k_scale = v_scale = torch.tensor(1.0, dtype=torch.float32, device=device)

    # Call the reshape_and_cache kernel.
    opcheck(
        ops.ops.reshape_and_cache,
        (
            key,
            value,
            key_cache,
            value_cache,
            slot_mapping,
            kv_cache_dtype,
            k_scale,
            v_scale,
        ),
        cond=(head_size == HEAD_SIZES[0]),
    )
    ops.reshape_and_cache(
        key,
        value,
        key_cache,
        value_cache,
        slot_mapping,
        kv_cache_dtype,
        k_scale,
        v_scale,
    )

    if kv_cache_dtype == "fp8":
        result_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
        ops.convert_fp8(result_key_cache, key_cache)
        result_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
        ops.convert_fp8(result_value_cache, value_cache)

    # Run the reference implementation.
    reshaped_key = key.reshape(num_tokens, *key_cache[0, :, :, 0, :].shape)
    block_indicies = torch.div(slot_mapping, block_size, rounding_mode="floor")
    block_indicies_lst = block_indicies.cpu().tolist()
    block_offsets = slot_mapping % block_size
    block_offsets_lst = block_offsets.cpu().tolist()
    for i in range(num_tokens):
        block_idx = block_indicies_lst[i]
        block_offset = block_offsets_lst[i]
        cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
        cloned_value_cache[block_idx, :, :, block_offset] = value[i]

    if kv_cache_dtype == "fp8":
        torch.testing.assert_close(
            result_key_cache, cloned_key_cache, atol=0.02, rtol=0.2
        )
        torch.testing.assert_close(
            result_value_cache, cloned_value_cache, atol=0.02, rtol=0.2
        )
    else:
        torch.testing.assert_close(key_cache, cloned_key_cache)
        torch.testing.assert_close(value_cache, cloned_value_cache)


@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_reshape_and_cache_flash(
    kv_cache_factory_flashinfer,
    num_tokens: int,
    num_heads: int,
    head_size: int,
    block_size: int,
    num_blocks: int,
    dtype: torch.dtype,
    seed: int,
    device: str,
    kv_cache_dtype: str,
) -> None:
    # Flash variant doesn't support FP8 on MPS devices yet
    if current_platform.is_mps() and kv_cache_dtype == "fp8":
        pytest.skip("reshape_and_cache_flash doesn't support FP8 on MPS")
    current_platform.seed_everything(seed)
    torch.set_default_device(device)

    # Create a random slot mapping.
    num_slots = block_size * num_blocks
    slot_mapping_lst = random.sample(range(num_slots), num_tokens)
    slot_mapping = torch.tensor(slot_mapping_lst, dtype=torch.long, device=device)

    qkv = torch.randn(num_tokens, 3, num_heads, head_size, dtype=dtype, device=device)
    _, key, value = qkv.unbind(dim=1)

    # Create the KV caches.
    key_caches, value_caches = kv_cache_factory_flashinfer(
        num_blocks,
        block_size,
        1,
        num_heads,
        head_size,
        kv_cache_dtype,
        dtype,
        device=device,
    )
    key_cache, value_cache = key_caches[0].contiguous(), value_caches[0].contiguous()
    del key_caches
    del value_caches

    k_scale = (key.amax() / 256.0).to(torch.float32)
    v_scale = (value.amax() / 256.0).to(torch.float32)

    # Clone the KV caches.
    if kv_cache_dtype == "fp8":
        cloned_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
        ops.convert_fp8(cloned_key_cache, key_cache, k_scale, kv_cache_dtype)
        cloned_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
        ops.convert_fp8(cloned_value_cache, value_cache, v_scale, kv_cache_dtype)
    else:
        cloned_key_cache = key_cache.clone()
        cloned_value_cache = value_cache.clone()

    # Call the reshape_and_cache kernel.
    opcheck(
        ops.ops.reshape_and_cache_flash,
        (
            key,
            value,
            key_cache,
            value_cache,
            slot_mapping,
            kv_cache_dtype,
            k_scale,
            v_scale,
        ),
        cond=(head_size == HEAD_SIZES[0]),
    )
    ops.reshape_and_cache_flash(
        key,
        value,
        key_cache,
        value_cache,
        slot_mapping,
        kv_cache_dtype,
        k_scale,
        v_scale,
    )

    if kv_cache_dtype == "fp8":
        result_key_cache = torch.empty_like(key_cache, dtype=torch.float16)
        ops.convert_fp8(
            result_key_cache, key_cache, k_scale.item(), kv_dtype=kv_cache_dtype
        )
        result_value_cache = torch.empty_like(value_cache, dtype=torch.float16)
        ops.convert_fp8(
            result_value_cache, value_cache, v_scale.item(), kv_dtype=kv_cache_dtype
        )

    # Run the reference implementation.
    block_indicies = torch.div(slot_mapping, block_size, rounding_mode="floor")
    block_indicies_lst = block_indicies.cpu().tolist()
    block_offsets = slot_mapping % block_size
    block_offsets_lst = block_offsets.cpu().tolist()
    for i in range(num_tokens):
        block_idx = block_indicies_lst[i]
        block_offset = block_offsets_lst[i]
        cloned_key_cache[block_idx, block_offset, :, :] = key[i]
        cloned_value_cache[block_idx, block_offset, :, :] = value[i]

    if kv_cache_dtype == "fp8":
        torch.testing.assert_close(
            result_key_cache, cloned_key_cache, atol=0.02, rtol=0.2
        )
        torch.testing.assert_close(
            result_value_cache, cloned_value_cache, atol=0.02, rtol=0.2
        )
    else:
        torch.testing.assert_close(key_cache, cloned_key_cache)
        torch.testing.assert_close(value_cache, cloned_value_cache)


@pytest.mark.parametrize("direction", COPYING_DIRECTION)
@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@pytest.mark.parametrize("kv_cache_dtype", KV_CACHE_DTYPE)
@torch.inference_mode()
def test_swap_blocks(
    kv_cache_factory,
    direction: Tuple[str, str],
    num_mappings: int,
    num_heads: int,
    head_size: int,
    block_size: int,
    num_blocks: int,
    dtype: torch.dtype,
    seed: int,
    device: str,
    kv_cache_dtype: str,
) -> None:
    if kv_cache_dtype == "fp8" and "cpu" in direction:
        pytest.skip()
    if kv_cache_dtype == "fp8" and head_size % 16:
        pytest.skip()

    current_platform.seed_everything(seed)

    src_device = device if direction[0] == "gpu" else "cpu"
    dst_device = device if direction[1] == "gpu" else "cpu"

    src_blocks = random.sample(range(num_blocks), num_mappings)
    # For the same device, mapping must not overlap
    if src_device == dst_device:
        remaining_blocks = list(set(range(num_blocks)) - set(src_blocks))
        dst_blocks = random.sample(remaining_blocks, num_mappings)
    else:
        dst_blocks = random.sample(range(num_blocks), num_mappings)

    block_mapping = list(zip(src_blocks, dst_blocks))
    block_mapping_tensor = torch.tensor(
        block_mapping, dtype=torch.int64, device="cpu"
    ).view(-1, 2)

    # Create the KV caches on the first device.
    src_key_caches, src_value_caches = kv_cache_factory(
        num_blocks,
        block_size,
        1,
        num_heads,
        head_size,
        kv_cache_dtype,
        dtype,
        seed,
        src_device,
    )

    # Create the KV caches on the second device.
    dist_key_caches, dist_value_caches = kv_cache_factory(
        num_blocks,
        block_size,
        1,
        num_heads,
        head_size,
        kv_cache_dtype,
        dtype,
        seed,
        dst_device,
    )

    src_key_caches_clone = src_key_caches[0].clone()
    src_value_caches_clone = src_value_caches[0].clone()

    # Call the swap_blocks kernel.
    do_opcheck = head_size == HEAD_SIZES[0]
    opcheck(
        ops.ops.swap_blocks,
        (src_key_caches[0], dist_key_caches[0], block_mapping_tensor),
        cond=do_opcheck,
    )
    opcheck(
        ops.ops.swap_blocks,
        (src_value_caches[0], dist_value_caches[0], block_mapping_tensor),
        cond=do_opcheck,
    )

    ops.swap_blocks(src_key_caches[0], dist_key_caches[0], block_mapping_tensor)
    ops.swap_blocks(src_value_caches[0], dist_value_caches[0], block_mapping_tensor)

    for src, dst in block_mapping:
        torch.testing.assert_close(
            src_key_caches_clone[src].cpu(), dist_key_caches[0][dst].cpu()
        )
        torch.testing.assert_close(
            src_value_caches_clone[src].cpu(), dist_value_caches[0][dst].cpu()
        )


@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@torch.inference_mode()
def test_fp8_e4m3_conversion(
    num_heads: int,
    head_size: int,
    block_size: int,
    num_blocks: int,
    dtype: torch.dtype,
    seed: int,
    device: str,
) -> None:
    current_platform.seed_everything(seed)

    low = -224.0
    high = 224.0
    shape = (num_blocks, num_heads, head_size, block_size)
    cache = torch.empty(shape, dtype=dtype, device=device)
    cache.uniform_(low, high)

    cache_fp8 = torch.empty_like(cache, dtype=torch.uint8)
    ops.convert_fp8(cache_fp8, cache)

    converted_cache = torch.empty_like(cache)
    ops.convert_fp8(converted_cache, cache_fp8)

    torch.testing.assert_close(cache, converted_cache, atol=0.02, rtol=0.2)


@pytest.mark.parametrize("src_dtype", [torch.float, torch.half, torch.bfloat16, torch.uint8])
@pytest.mark.parametrize("dst_dtype", [torch.float, torch.half, torch.bfloat16, torch.uint8])
@pytest.mark.parametrize("scale", [1.0, 0.5, 2.0, 0.1])
@pytest.mark.parametrize("device", DEVICES)
@torch.inference_mode()
def test_convert_fp8_comprehensive(
    src_dtype: torch.dtype,
    dst_dtype: torch.dtype,
    scale: float,
    device: str,
) -> None:
    """Test comprehensive FP8 conversion between all supported types"""
    if current_platform.is_mps() and device != "mps:0":
        pytest.skip()
    if not current_platform.is_mps() and device == "mps:0":
        pytest.skip()
    
    current_platform.seed_everything(0)
    torch.set_default_device(device)
    
    # Create test tensor with reasonable values for FP8 range
    shape = (32, 8, 16, 16)  # Small tensor for fast testing
    if src_dtype == torch.uint8:
        # Create FP8 data by converting from float
        src_float = torch.randn(shape, dtype=torch.float, device=device) * 0.1
        src_cache = torch.empty(shape, dtype=torch.uint8, device=device)
        ops.convert_fp8(src_cache, src_float, 1.0, "fp8")
    else:
        # Create source data in range suitable for FP8 conversion
        src_cache = torch.randn(shape, dtype=src_dtype, device=device) * 0.1
    
    # Perform conversion
    dst_cache = torch.empty_like(src_cache, dtype=dst_dtype, device=device)
    ops.convert_fp8(dst_cache, src_cache, scale, "fp8")
    
    # Verify the tensor was modified (not all zeros)
    assert not torch.allclose(dst_cache.float(), torch.zeros_like(dst_cache.float()))
    
    # For round-trip tests (same type), verify approximate equality
    if src_dtype == dst_dtype and scale == 1.0:
        if src_dtype == torch.uint8:
            # FP8 -> FP8 should be identity with scale=1.0
            torch.testing.assert_close(src_cache, dst_cache)
        else:
            # Non-FP8 -> Non-FP8 should be identity with scale=1.0
            torch.testing.assert_close(src_cache, dst_cache, atol=1e-6, rtol=1e-5)
    
    # For FP8 round-trip tests (float -> FP8 -> float), verify reasonable approximation
    if src_dtype != torch.uint8 and dst_dtype == torch.uint8 and scale == 1.0:
        # Convert back to verify round-trip accuracy
        roundtrip = torch.empty_like(src_cache, dtype=src_dtype, device=device)
        ops.convert_fp8(roundtrip, dst_cache, 1.0, "fp8")
        # FP8 has limited precision, so use relaxed tolerances
        torch.testing.assert_close(src_cache, roundtrip, atol=0.02, rtol=0.2)