Add fp8 support
Browse files- .gitattributes +2 -0
- build.toml +2 -0
- paged-attention-metal/attention/paged_attention.metal +292 -87
- paged-attention-metal/cache.mm +67 -12
- paged-attention-metal/cache/copy_blocks.metal +1 -0
- paged-attention-metal/cache/reshape_and_cache.metal +74 -23
- paged-attention-metal/convert_fp8.metal +77 -0
- paged-attention-metal/convert_fp8.mm +109 -1
- paged-attention-metal/float8.metal +122 -0
- paged-attention-metal/paged_attention.mm +72 -10
- tests/kernels/test_attention.py +1 -1
- tests/kernels/test_cache.py +68 -11
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.so filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.metallib filter=lfs diff=lfs merge=lfs -text
|
build.toml
CHANGED
@@ -13,6 +13,8 @@ src = [
|
|
13 |
"paged-attention-metal/attention/paged_attention.metal",
|
14 |
"paged-attention-metal/cache/copy_blocks.metal",
|
15 |
"paged-attention-metal/cache/reshape_and_cache.metal",
|
|
|
|
|
16 |
"paged-attention-metal/utils.metal",
|
17 |
"paged-attention-metal/paged_attention.mm",
|
18 |
"paged-attention-metal/cache.mm",
|
|
|
13 |
"paged-attention-metal/attention/paged_attention.metal",
|
14 |
"paged-attention-metal/cache/copy_blocks.metal",
|
15 |
"paged-attention-metal/cache/reshape_and_cache.metal",
|
16 |
+
"paged-attention-metal/convert_fp8.metal",
|
17 |
+
"paged-attention-metal/float8.metal",
|
18 |
"paged-attention-metal/utils.metal",
|
19 |
"paged-attention-metal/paged_attention.mm",
|
20 |
"paged-attention-metal/cache.mm",
|
paged-attention-metal/attention/paged_attention.metal
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
// Updated from MLX commit has f70764a
|
2 |
|
3 |
#include "../utils.metal"
|
|
|
4 |
#include <metal_simdgroup>
|
5 |
#include <metal_stdlib>
|
6 |
|
@@ -529,6 +530,154 @@ inline void from_float(thread Half8_ &dst, Float8_ src) {
|
|
529 |
dst.y = y;
|
530 |
}
|
531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
// ========================================== Dot product utilities
|
533 |
|
534 |
// TODO(EricLBuehler): optimize with vectorization
|
@@ -602,8 +751,9 @@ inline float block_sum(threadgroup float *red_smem, float sum, uint simd_tid,
|
|
602 |
|
603 |
constant bool use_partitioning [[function_constant(10)]];
|
604 |
constant bool use_alibi [[function_constant(20)]];
|
|
|
605 |
|
606 |
-
template <typename T, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS,
|
607 |
int NUM_SIMD_LANES, int PARTITION_SIZE = 0>
|
608 |
[[kernel]] void paged_attention(
|
609 |
device float *exp_sums
|
@@ -615,22 +765,26 @@ template <typename T, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS,
|
|
615 |
device T *out
|
616 |
[[buffer(2)]], // [num_seqs, num_heads, max_num_partitions, head_size]
|
617 |
device const T *q [[buffer(3)]], // [num_seqs, num_heads, head_size]
|
618 |
-
device const
|
619 |
[[buffer(4)]], // [num_blocks, num_kv_heads, head_size/x, block_size, x]
|
620 |
-
device const
|
621 |
[[buffer(5)]], // [num_blocks, num_kv_heads, head_size, block_size]
|
622 |
-
const
|
623 |
-
|
624 |
-
const
|
|
|
|
|
|
|
|
|
625 |
device const uint32_t *block_tables
|
626 |
-
[[buffer(
|
627 |
-
device const uint32_t *context_lens [[buffer(
|
628 |
-
const constant int &max_num_blocks_per_seq [[buffer(
|
629 |
device const float *alibi_slopes
|
630 |
-
[[buffer(
|
631 |
-
const constant int &q_stride [[buffer(
|
632 |
-
const constant int &kv_block_stride [[buffer(
|
633 |
-
const constant int &kv_head_stride [[buffer(
|
634 |
threadgroup char *shared_mem [[threadgroup(0)]],
|
635 |
uint3 threadgroup_position_in_grid [[threadgroup_position_in_grid]],
|
636 |
uint3 threadgroups_per_grid [[threadgroups_per_grid]],
|
@@ -690,6 +844,7 @@ template <typename T, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS,
|
|
690 |
constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(T)), 1);
|
691 |
using K_vec = typename Vec<T, VEC_SIZE>::Type;
|
692 |
using Q_vec = typename Vec<T, VEC_SIZE>::Type;
|
|
|
693 |
|
694 |
constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
|
695 |
constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
|
@@ -720,7 +875,7 @@ template <typename T, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS,
|
|
720 |
|
721 |
// x == THREAD_GROUP_SIZE * VEC_SIZE
|
722 |
// Each thread group fetches x elements from the key at a time.
|
723 |
-
constexpr int x = 16 / sizeof(
|
724 |
float qk_max = -FLT_MAX;
|
725 |
|
726 |
// Iterate over the key blocks.
|
@@ -750,14 +905,23 @@ template <typename T, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS,
|
|
750 |
|
751 |
#pragma unroll
|
752 |
for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
|
753 |
-
const device
|
754 |
k_cache + physical_block_number * kv_block_stride +
|
755 |
kv_head_idx * kv_head_stride + physical_block_offset * x;
|
756 |
const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
|
757 |
const int offset1 = (vec_idx * VEC_SIZE) / x;
|
758 |
const int offset2 = (vec_idx * VEC_SIZE) % x;
|
759 |
-
|
760 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
761 |
}
|
762 |
|
763 |
// Compute dot product.
|
@@ -844,6 +1008,7 @@ template <typename T, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS,
|
|
844 |
using V_vec = typename Vec<T, V_VEC_SIZE>::Type;
|
845 |
using L_vec = typename Vec<T, V_VEC_SIZE>::Type;
|
846 |
using Float_L_vec = typename FloatVec<L_vec>::Type;
|
|
|
847 |
|
848 |
constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
|
849 |
constexpr int NUM_ROWS_PER_ITER = NUM_SIMD_LANES / NUM_V_VECS_PER_ROW;
|
@@ -872,8 +1037,8 @@ template <typename T, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS,
|
|
872 |
logits + token_idx - start_token_idx);
|
873 |
from_float(logits_vec, logits_float_vec);
|
874 |
|
875 |
-
const device
|
876 |
-
|
877 |
#pragma unroll
|
878 |
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
879 |
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
@@ -883,7 +1048,18 @@ template <typename T, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS,
|
|
883 |
// we should explicitly zero out the values since they may contain NaNs.
|
884 |
// See
|
885 |
// https://github.com/vllm-project/vllm/issues/641#issuecomment-1682544472
|
886 |
-
V_vec v_vec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
887 |
if (block_idx == num_context_blocks - 1) {
|
888 |
thread T *v_vec_ptr = reinterpret_cast<thread T *>(&v_vec);
|
889 |
#pragma unroll
|
@@ -1073,36 +1249,38 @@ template <typename T, int HEAD_SIZE, int NUM_THREADS, int NUM_SIMD_LANES,
|
|
1073 |
}
|
1074 |
}
|
1075 |
|
1076 |
-
#define instantiate_paged_attention_inner(
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
|
1088 |
-
|
1089 |
-
|
1090 |
-
|
1091 |
-
|
1092 |
-
|
1093 |
-
|
1094 |
-
|
1095 |
-
|
1096 |
-
|
1097 |
-
|
1098 |
-
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
1103 |
-
|
1104 |
-
|
1105 |
-
|
|
|
|
|
1106 |
|
1107 |
#define instantiate_paged_attention_v2_reduce_inner( \
|
1108 |
type, head_size, num_threads, num_simd_lanes, partition_size) \
|
@@ -1125,26 +1303,35 @@ template <typename T, int HEAD_SIZE, int NUM_THREADS, int NUM_SIMD_LANES,
|
|
1125 |
uint simd_tid [[simdgroup_index_in_threadgroup]], \
|
1126 |
uint simd_lid [[thread_index_in_simdgroup]]);
|
1127 |
|
1128 |
-
#define instantiate_paged_attention_heads(
|
1129 |
-
|
1130 |
-
instantiate_paged_attention_inner(type, 32, block_size,
|
1131 |
-
num_simd_lanes,
|
1132 |
-
|
1133 |
-
|
1134 |
-
|
1135 |
-
|
1136 |
-
instantiate_paged_attention_inner(type,
|
1137 |
-
num_simd_lanes,
|
1138 |
-
|
1139 |
-
|
1140 |
-
|
1141 |
-
|
1142 |
-
instantiate_paged_attention_inner(type,
|
1143 |
-
num_simd_lanes,
|
1144 |
-
|
1145 |
-
|
1146 |
-
|
1147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1148 |
|
1149 |
#define instantiate_paged_attention_v2_reduce_heads( \
|
1150 |
type, num_threads, num_simd_lanes, partition_size) \
|
@@ -1167,30 +1354,48 @@ template <typename T, int HEAD_SIZE, int NUM_THREADS, int NUM_SIMD_LANES,
|
|
1167 |
instantiate_paged_attention_v2_reduce_inner(type, 256, num_threads, \
|
1168 |
num_simd_lanes, partition_size);
|
1169 |
|
1170 |
-
#define instantiate_paged_attention_block_size(type, num_threads,
|
1171 |
num_simd_lanes, partition_size) \
|
1172 |
-
instantiate_paged_attention_heads(type, 8, num_threads,
|
1173 |
-
partition_size);
|
1174 |
-
instantiate_paged_attention_heads(type, 16, num_threads,
|
1175 |
-
partition_size);
|
1176 |
-
instantiate_paged_attention_heads(type, 32, num_threads,
|
1177 |
-
partition_size);
|
1178 |
|
1179 |
// TODO: tune num_threads = 256
|
1180 |
// NOTE: partition_size = 0
|
1181 |
-
#define instantiate_paged_attention_v1(type, num_simd_lanes)
|
1182 |
-
instantiate_paged_attention_block_size(type,
|
|
|
1183 |
|
1184 |
// TODO: tune num_threads = 256
|
1185 |
// NOTE: partition_size = 512
|
1186 |
-
#define instantiate_paged_attention_v2(type, num_simd_lanes)
|
1187 |
-
instantiate_paged_attention_block_size(type,
|
|
|
|
|
|
|
|
|
|
|
1188 |
instantiate_paged_attention_v2_reduce_heads(type, 256, num_simd_lanes, 512);
|
1189 |
|
1190 |
-
instantiate_paged_attention_v1(float, 32);
|
1191 |
-
instantiate_paged_attention_v1(bfloat16_t, 32);
|
1192 |
-
instantiate_paged_attention_v1(half, 32);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1193 |
|
1194 |
-
instantiate_paged_attention_v2(float, 32);
|
1195 |
-
instantiate_paged_attention_v2(bfloat16_t, 32);
|
1196 |
-
instantiate_paged_attention_v2(half, 32);
|
|
|
1 |
// Updated from MLX commit has f70764a
|
2 |
|
3 |
#include "../utils.metal"
|
4 |
+
#include "../float8.metal"
|
5 |
#include <metal_simdgroup>
|
6 |
#include <metal_stdlib>
|
7 |
|
|
|
530 |
dst.y = y;
|
531 |
}
|
532 |
|
533 |
+
// ========================================== FP8 (uchar) vector data types.
|
534 |
+
|
535 |
+
// 8‑lane uchar vector – Metal only provides up to uchar4, so build our own.
|
536 |
+
struct Uchar8_ {
|
537 |
+
uchar4 x;
|
538 |
+
uchar4 y;
|
539 |
+
};
|
540 |
+
|
541 |
+
// Vec specialisations so Vec<uchar, N>::Type resolves correctly.
|
542 |
+
template <> struct Vec<uchar, 1> {
|
543 |
+
using Type = uchar;
|
544 |
+
};
|
545 |
+
template <> struct Vec<uchar, 2> {
|
546 |
+
using Type = uchar2;
|
547 |
+
};
|
548 |
+
template <> struct Vec<uchar, 4> {
|
549 |
+
using Type = uchar4;
|
550 |
+
};
|
551 |
+
template <> struct Vec<uchar, 8> {
|
552 |
+
using Type = Uchar8_;
|
553 |
+
};
|
554 |
+
|
555 |
+
// General case: not uchar
|
556 |
+
template <typename T> inline constexpr bool is_uchar() { return false; }
|
557 |
+
|
558 |
+
// Specialization: T is uchar
|
559 |
+
template <> inline constexpr bool is_uchar<uchar>() { return true; }
|
560 |
+
|
561 |
+
// Generic fallback – will fail to compile if a required specialisation is
|
562 |
+
// missing.
|
563 |
+
template <typename Vec, typename Quant_vec>
|
564 |
+
inline Vec fp8_convert(const thread Quant_vec &, float scale) {
|
565 |
+
static_assert(sizeof(Vec) == 0, "Missing fp8_convert specialisation");
|
566 |
+
}
|
567 |
+
|
568 |
+
// ========================================== FP8 → float/half/bfloat
|
569 |
+
inline float __dequant_single(uchar v, float scale) {
|
570 |
+
return fp8_e4m3_to_float(v) * scale;
|
571 |
+
}
|
572 |
+
|
573 |
+
// ---- 1‑lane ----
|
574 |
+
template <>
|
575 |
+
inline float fp8_convert<float, uchar>(const thread uchar &in, float scale) {
|
576 |
+
return __dequant_single(in, scale);
|
577 |
+
}
|
578 |
+
template <>
|
579 |
+
inline half fp8_convert<half, uchar>(const thread uchar &in, float scale) {
|
580 |
+
return half(__dequant_single(in, scale));
|
581 |
+
}
|
582 |
+
template <>
|
583 |
+
inline bfloat16_t fp8_convert<bfloat16_t, uchar>(const thread uchar &in,
|
584 |
+
float scale) {
|
585 |
+
return bfloat16_t(__dequant_single(in, scale));
|
586 |
+
}
|
587 |
+
|
588 |
+
// ---- 2‑lane ----
|
589 |
+
template <>
|
590 |
+
inline float2 fp8_convert<float2, uchar2>(const thread uchar2 &in,
|
591 |
+
float scale) {
|
592 |
+
return float2(__dequant_single(in.x, scale), __dequant_single(in.y, scale));
|
593 |
+
}
|
594 |
+
template <>
|
595 |
+
inline half2 fp8_convert<half2, uchar2>(const thread uchar2 &in, float scale) {
|
596 |
+
half2 out;
|
597 |
+
out.x = half(__dequant_single(in.x, scale));
|
598 |
+
out.y = half(__dequant_single(in.y, scale));
|
599 |
+
return out;
|
600 |
+
}
|
601 |
+
template <>
|
602 |
+
inline Bfloat2_ fp8_convert<Bfloat2_, uchar2>(const thread uchar2 &in,
|
603 |
+
float scale) {
|
604 |
+
Bfloat2_ out;
|
605 |
+
out.x = bfloat16_t(__dequant_single(in.x, scale));
|
606 |
+
out.y = bfloat16_t(__dequant_single(in.y, scale));
|
607 |
+
return out;
|
608 |
+
}
|
609 |
+
|
610 |
+
// ---- 4‑lane ----
|
611 |
+
template <>
|
612 |
+
inline float4 fp8_convert<float4, uchar4>(const thread uchar4 &in,
|
613 |
+
float scale) {
|
614 |
+
return float4(__dequant_single(in.x, scale), __dequant_single(in.y, scale),
|
615 |
+
__dequant_single(in.z, scale), __dequant_single(in.w, scale));
|
616 |
+
}
|
617 |
+
template <>
|
618 |
+
inline half4 fp8_convert<half4, uchar4>(const thread uchar4 &in, float scale) {
|
619 |
+
half4 out;
|
620 |
+
out.x = half(__dequant_single(in.x, scale));
|
621 |
+
out.y = half(__dequant_single(in.y, scale));
|
622 |
+
out.z = half(__dequant_single(in.z, scale));
|
623 |
+
out.w = half(__dequant_single(in.w, scale));
|
624 |
+
return out;
|
625 |
+
}
|
626 |
+
template <>
|
627 |
+
inline Bfloat4_ fp8_convert<Bfloat4_, uchar4>(const thread uchar4 &in,
|
628 |
+
float scale) {
|
629 |
+
Bfloat4_ out;
|
630 |
+
out.x.x = bfloat16_t(__dequant_single(in.x, scale));
|
631 |
+
out.x.y = bfloat16_t(__dequant_single(in.y, scale));
|
632 |
+
out.y.x = bfloat16_t(__dequant_single(in.z, scale));
|
633 |
+
out.y.y = bfloat16_t(__dequant_single(in.w, scale));
|
634 |
+
return out;
|
635 |
+
}
|
636 |
+
|
637 |
+
// ---- 8‑lane ----
|
638 |
+
template <>
|
639 |
+
inline Float8_ fp8_convert<Float8_, Uchar8_>(const thread Uchar8_ &in,
|
640 |
+
float scale) {
|
641 |
+
Float8_ out;
|
642 |
+
out.x =
|
643 |
+
float4(__dequant_single(in.x.x, scale), __dequant_single(in.x.y, scale),
|
644 |
+
__dequant_single(in.x.z, scale), __dequant_single(in.x.w, scale));
|
645 |
+
out.y =
|
646 |
+
float4(__dequant_single(in.y.x, scale), __dequant_single(in.y.y, scale),
|
647 |
+
__dequant_single(in.y.z, scale), __dequant_single(in.y.w, scale));
|
648 |
+
return out;
|
649 |
+
}
|
650 |
+
template <>
|
651 |
+
inline Half8_ fp8_convert<Half8_, Uchar8_>(const thread Uchar8_ &in,
|
652 |
+
float scale) {
|
653 |
+
Half8_ out;
|
654 |
+
out.x = half4(half(__dequant_single(in.x.x, scale)),
|
655 |
+
half(__dequant_single(in.x.y, scale)),
|
656 |
+
half(__dequant_single(in.x.z, scale)),
|
657 |
+
half(__dequant_single(in.x.w, scale)));
|
658 |
+
out.y = half4(half(__dequant_single(in.y.x, scale)),
|
659 |
+
half(__dequant_single(in.y.y, scale)),
|
660 |
+
half(__dequant_single(in.y.z, scale)),
|
661 |
+
half(__dequant_single(in.y.w, scale)));
|
662 |
+
return out;
|
663 |
+
}
|
664 |
+
template <>
|
665 |
+
inline Bfloat8_ fp8_convert<Bfloat8_, Uchar8_>(const thread Uchar8_ &in,
|
666 |
+
float scale) {
|
667 |
+
Bfloat8_ out;
|
668 |
+
// first 4
|
669 |
+
out.x.x.x = bfloat16_t(__dequant_single(in.x.x, scale));
|
670 |
+
out.x.x.y = bfloat16_t(__dequant_single(in.x.y, scale));
|
671 |
+
out.x.y.x = bfloat16_t(__dequant_single(in.x.z, scale));
|
672 |
+
out.x.y.y = bfloat16_t(__dequant_single(in.x.w, scale));
|
673 |
+
// second 4
|
674 |
+
out.y.x.x = bfloat16_t(__dequant_single(in.y.x, scale));
|
675 |
+
out.y.x.y = bfloat16_t(__dequant_single(in.y.y, scale));
|
676 |
+
out.y.y.x = bfloat16_t(__dequant_single(in.y.z, scale));
|
677 |
+
out.y.y.y = bfloat16_t(__dequant_single(in.y.w, scale));
|
678 |
+
return out;
|
679 |
+
}
|
680 |
+
|
681 |
// ========================================== Dot product utilities
|
682 |
|
683 |
// TODO(EricLBuehler): optimize with vectorization
|
|
|
751 |
|
752 |
constant bool use_partitioning [[function_constant(10)]];
|
753 |
constant bool use_alibi [[function_constant(20)]];
|
754 |
+
constant bool use_fp8_scales [[function_constant(30)]];
|
755 |
|
756 |
+
template <typename T, typename CACHE_T, int HEAD_SIZE, int BLOCK_SIZE, int NUM_THREADS,
|
757 |
int NUM_SIMD_LANES, int PARTITION_SIZE = 0>
|
758 |
[[kernel]] void paged_attention(
|
759 |
device float *exp_sums
|
|
|
765 |
device T *out
|
766 |
[[buffer(2)]], // [num_seqs, num_heads, max_num_partitions, head_size]
|
767 |
device const T *q [[buffer(3)]], // [num_seqs, num_heads, head_size]
|
768 |
+
device const CACHE_T *k_cache
|
769 |
[[buffer(4)]], // [num_blocks, num_kv_heads, head_size/x, block_size, x]
|
770 |
+
device const CACHE_T *v_cache
|
771 |
[[buffer(5)]], // [num_blocks, num_kv_heads, head_size, block_size]
|
772 |
+
const device float *__restrict__ k_scale
|
773 |
+
[[buffer(6)]], // [1] - only used when use_fp8_scales
|
774 |
+
const device float *__restrict__ v_scale
|
775 |
+
[[buffer(7)]], // [1] - only used when use_fp8_scales
|
776 |
+
const constant int &num_kv_heads [[buffer(8)]], // [num_heads]
|
777 |
+
const constant float &scale [[buffer(9)]],
|
778 |
+
const constant float &softcapping [[buffer(10)]],
|
779 |
device const uint32_t *block_tables
|
780 |
+
[[buffer(11)]], // [num_seqs, max_num_blocks_per_seq]
|
781 |
+
device const uint32_t *context_lens [[buffer(12)]], // [num_seqs]
|
782 |
+
const constant int &max_num_blocks_per_seq [[buffer(13)]],
|
783 |
device const float *alibi_slopes
|
784 |
+
[[buffer(14)]], // [num_heads] - only used when use_alibi
|
785 |
+
const constant int &q_stride [[buffer(15)]],
|
786 |
+
const constant int &kv_block_stride [[buffer(16)]],
|
787 |
+
const constant int &kv_head_stride [[buffer(17)]],
|
788 |
threadgroup char *shared_mem [[threadgroup(0)]],
|
789 |
uint3 threadgroup_position_in_grid [[threadgroup_position_in_grid]],
|
790 |
uint3 threadgroups_per_grid [[threadgroups_per_grid]],
|
|
|
844 |
constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(T)), 1);
|
845 |
using K_vec = typename Vec<T, VEC_SIZE>::Type;
|
846 |
using Q_vec = typename Vec<T, VEC_SIZE>::Type;
|
847 |
+
using Quant_vec = typename Vec<CACHE_T, VEC_SIZE>::Type;
|
848 |
|
849 |
constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
|
850 |
constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;
|
|
|
875 |
|
876 |
// x == THREAD_GROUP_SIZE * VEC_SIZE
|
877 |
// Each thread group fetches x elements from the key at a time.
|
878 |
+
constexpr int x = 16 / sizeof(CACHE_T);
|
879 |
float qk_max = -FLT_MAX;
|
880 |
|
881 |
// Iterate over the key blocks.
|
|
|
905 |
|
906 |
#pragma unroll
|
907 |
for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
|
908 |
+
const device CACHE_T *k_ptr =
|
909 |
k_cache + physical_block_number * kv_block_stride +
|
910 |
kv_head_idx * kv_head_stride + physical_block_offset * x;
|
911 |
const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
|
912 |
const int offset1 = (vec_idx * VEC_SIZE) / x;
|
913 |
const int offset2 = (vec_idx * VEC_SIZE) % x;
|
914 |
+
|
915 |
+
if constexpr (is_uchar<CACHE_T>()) {
|
916 |
+
// FP8 support
|
917 |
+
Quant_vec k_vec_quant = *reinterpret_cast<const device Quant_vec *>(
|
918 |
+
k_ptr + offset1 * BLOCK_SIZE * x + offset2);
|
919 |
+
k_vecs[j] = fp8_convert<K_vec, Quant_vec>(k_vec_quant, *k_scale);
|
920 |
+
} else {
|
921 |
+
// Non-FP8 default
|
922 |
+
k_vecs[j] = *reinterpret_cast<const device K_vec *>(
|
923 |
+
k_ptr + offset1 * BLOCK_SIZE * x + offset2);
|
924 |
+
}
|
925 |
}
|
926 |
|
927 |
// Compute dot product.
|
|
|
1008 |
using V_vec = typename Vec<T, V_VEC_SIZE>::Type;
|
1009 |
using L_vec = typename Vec<T, V_VEC_SIZE>::Type;
|
1010 |
using Float_L_vec = typename FloatVec<L_vec>::Type;
|
1011 |
+
using V_quant_vec = typename Vec<CACHE_T, V_VEC_SIZE>::Type;
|
1012 |
|
1013 |
constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
|
1014 |
constexpr int NUM_ROWS_PER_ITER = NUM_SIMD_LANES / NUM_V_VECS_PER_ROW;
|
|
|
1037 |
logits + token_idx - start_token_idx);
|
1038 |
from_float(logits_vec, logits_float_vec);
|
1039 |
|
1040 |
+
const device CACHE_T *v_ptr = v_cache + physical_block_number * kv_block_stride +
|
1041 |
+
kv_head_idx * kv_head_stride;
|
1042 |
#pragma unroll
|
1043 |
for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
|
1044 |
const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
|
|
|
1048 |
// we should explicitly zero out the values since they may contain NaNs.
|
1049 |
// See
|
1050 |
// https://github.com/vllm-project/vllm/issues/641#issuecomment-1682544472
|
1051 |
+
V_vec v_vec;
|
1052 |
+
|
1053 |
+
if constexpr (is_uchar<CACHE_T>()) {
|
1054 |
+
// FP8 support
|
1055 |
+
V_quant_vec v_quant_vec =
|
1056 |
+
*reinterpret_cast<const device V_quant_vec *>(v_ptr + offset);
|
1057 |
+
v_vec = fp8_convert<V_vec, V_quant_vec>(v_quant_vec, *v_scale);
|
1058 |
+
} else {
|
1059 |
+
// Non-FP8 default
|
1060 |
+
v_vec = *reinterpret_cast<const device V_vec *>(v_ptr + offset);
|
1061 |
+
}
|
1062 |
+
|
1063 |
if (block_idx == num_context_blocks - 1) {
|
1064 |
thread T *v_vec_ptr = reinterpret_cast<thread T *>(&v_vec);
|
1065 |
#pragma unroll
|
|
|
1249 |
}
|
1250 |
}
|
1251 |
|
1252 |
+
#define instantiate_paged_attention_inner(type, cache_type, head_size, \
|
1253 |
+
block_size, num_threads, \
|
1254 |
+
num_simd_lanes, partition_size) \
|
1255 |
+
template [[host_name("paged_attention_" #type "_cache_" #cache_type \
|
1256 |
+
"_hs" #head_size "_bs" #block_size "_nt" #num_threads \
|
1257 |
+
"_nsl" #num_simd_lanes \
|
1258 |
+
"_ps" #partition_size)]] [[kernel]] void \
|
1259 |
+
paged_attention<type, cache_type, head_size, block_size, num_threads, \
|
1260 |
+
num_simd_lanes, partition_size>( \
|
1261 |
+
device float *exp_sums [[buffer(0)]], \
|
1262 |
+
device float *max_logits [[buffer(1)]], \
|
1263 |
+
device type *out [[buffer(2)]], device const type *q [[buffer(3)]], \
|
1264 |
+
device const cache_type *k_cache [[buffer(4)]], \
|
1265 |
+
device const cache_type *v_cache [[buffer(5)]], \
|
1266 |
+
const device float *__restrict__ k_scale [[buffer(6)]], \
|
1267 |
+
const device float *__restrict__ v_scale [[buffer(7)]], \
|
1268 |
+
const constant int &num_kv_heads [[buffer(8)]], \
|
1269 |
+
const constant float &scale [[buffer(9)]], \
|
1270 |
+
const constant float &softcapping [[buffer(10)]], \
|
1271 |
+
device const uint32_t *block_tables [[buffer(11)]], \
|
1272 |
+
device const uint32_t *context_lens [[buffer(12)]], \
|
1273 |
+
const constant int &max_num_blocks_per_seq [[buffer(13)]], \
|
1274 |
+
device const float *alibi_slopes [[buffer(14)]], \
|
1275 |
+
const constant int &q_stride [[buffer(15)]], \
|
1276 |
+
const constant int &kv_block_stride [[buffer(16)]], \
|
1277 |
+
const constant int &kv_head_stride [[buffer(17)]], \
|
1278 |
+
threadgroup char *shared_mem [[threadgroup(0)]], \
|
1279 |
+
uint3 threadgroup_position_in_grid [[threadgroup_position_in_grid]], \
|
1280 |
+
uint3 threadgroups_per_grid [[threadgroups_per_grid]], \
|
1281 |
+
uint3 thread_position_in_threadgroup [[thread_position_in_threadgroup]], \
|
1282 |
+
uint simd_tid [[simdgroup_index_in_threadgroup]], \
|
1283 |
+
uint simd_lid [[thread_index_in_simdgroup]]);
|
1284 |
|
1285 |
#define instantiate_paged_attention_v2_reduce_inner( \
|
1286 |
type, head_size, num_threads, num_simd_lanes, partition_size) \
|
|
|
1303 |
uint simd_tid [[simdgroup_index_in_threadgroup]], \
|
1304 |
uint simd_lid [[thread_index_in_simdgroup]]);
|
1305 |
|
1306 |
+
#define instantiate_paged_attention_heads( \
|
1307 |
+
type, cache_type, block_size, num_threads, num_simd_lanes, partition_size) \
|
1308 |
+
instantiate_paged_attention_inner(type, cache_type, 32, block_size, \
|
1309 |
+
num_threads, num_simd_lanes, \
|
1310 |
+
partition_size); \
|
1311 |
+
instantiate_paged_attention_inner(type, cache_type, 64, block_size, \
|
1312 |
+
num_threads, num_simd_lanes, \
|
1313 |
+
partition_size); \
|
1314 |
+
instantiate_paged_attention_inner(type, cache_type, 80, block_size, \
|
1315 |
+
num_threads, num_simd_lanes, \
|
1316 |
+
partition_size); \
|
1317 |
+
instantiate_paged_attention_inner(type, cache_type, 96, block_size, \
|
1318 |
+
num_threads, num_simd_lanes, \
|
1319 |
+
partition_size); \
|
1320 |
+
instantiate_paged_attention_inner(type, cache_type, 112, block_size, \
|
1321 |
+
num_threads, num_simd_lanes, \
|
1322 |
+
partition_size); \
|
1323 |
+
instantiate_paged_attention_inner(type, cache_type, 120, block_size, \
|
1324 |
+
num_threads, num_simd_lanes, \
|
1325 |
+
partition_size); \
|
1326 |
+
instantiate_paged_attention_inner(type, cache_type, 128, block_size, \
|
1327 |
+
num_threads, num_simd_lanes, \
|
1328 |
+
partition_size); \
|
1329 |
+
instantiate_paged_attention_inner(type, cache_type, 192, block_size, \
|
1330 |
+
num_threads, num_simd_lanes, \
|
1331 |
+
partition_size); \
|
1332 |
+
instantiate_paged_attention_inner(type, cache_type, 256, block_size, \
|
1333 |
+
num_threads, num_simd_lanes, \
|
1334 |
+
partition_size);
|
1335 |
|
1336 |
#define instantiate_paged_attention_v2_reduce_heads( \
|
1337 |
type, num_threads, num_simd_lanes, partition_size) \
|
|
|
1354 |
instantiate_paged_attention_v2_reduce_inner(type, 256, num_threads, \
|
1355 |
num_simd_lanes, partition_size);
|
1356 |
|
1357 |
+
#define instantiate_paged_attention_block_size(type, cache_type, num_threads, \
|
1358 |
num_simd_lanes, partition_size) \
|
1359 |
+
instantiate_paged_attention_heads(type, cache_type, 8, num_threads, \
|
1360 |
+
num_simd_lanes, partition_size); \
|
1361 |
+
instantiate_paged_attention_heads(type, cache_type, 16, num_threads, \
|
1362 |
+
num_simd_lanes, partition_size); \
|
1363 |
+
instantiate_paged_attention_heads(type, cache_type, 32, num_threads, \
|
1364 |
+
num_simd_lanes, partition_size);
|
1365 |
|
1366 |
// TODO: tune num_threads = 256
|
1367 |
// NOTE: partition_size = 0
|
1368 |
+
#define instantiate_paged_attention_v1(type, cache_type, num_simd_lanes) \
|
1369 |
+
instantiate_paged_attention_block_size(type, cache_type, 256, \
|
1370 |
+
num_simd_lanes, 0);
|
1371 |
|
1372 |
// TODO: tune num_threads = 256
|
1373 |
// NOTE: partition_size = 512
|
1374 |
+
#define instantiate_paged_attention_v2(type, cache_type, num_simd_lanes) \
|
1375 |
+
instantiate_paged_attention_block_size(type, cache_type, 256, \
|
1376 |
+
num_simd_lanes, 512);
|
1377 |
+
|
1378 |
+
// TODO: tune num_threads = 256
|
1379 |
+
// NOTE: partition_size = 512
|
1380 |
+
#define instantiate_paged_attention_v2_reduce(type, num_simd_lanes) \
|
1381 |
instantiate_paged_attention_v2_reduce_heads(type, 256, num_simd_lanes, 512);
|
1382 |
|
1383 |
+
instantiate_paged_attention_v1(float, float, 32);
|
1384 |
+
instantiate_paged_attention_v1(bfloat16_t, bfloat16_t, 32);
|
1385 |
+
instantiate_paged_attention_v1(half, half, 32);
|
1386 |
+
|
1387 |
+
instantiate_paged_attention_v1(float, uchar, 32);
|
1388 |
+
instantiate_paged_attention_v1(bfloat16_t, uchar, 32);
|
1389 |
+
instantiate_paged_attention_v1(half, uchar, 32);
|
1390 |
+
|
1391 |
+
instantiate_paged_attention_v2_reduce(float, 32);
|
1392 |
+
instantiate_paged_attention_v2_reduce(bfloat16_t, 32);
|
1393 |
+
instantiate_paged_attention_v2_reduce(half, 32);
|
1394 |
+
|
1395 |
+
instantiate_paged_attention_v2(float, float, 32);
|
1396 |
+
instantiate_paged_attention_v2(bfloat16_t, bfloat16_t, 32);
|
1397 |
+
instantiate_paged_attention_v2(half, half, 32);
|
1398 |
|
1399 |
+
instantiate_paged_attention_v2(float, uchar, 32);
|
1400 |
+
instantiate_paged_attention_v2(bfloat16_t, uchar, 32);
|
1401 |
+
instantiate_paged_attention_v2(half, uchar, 32);
|
paged-attention-metal/cache.mm
CHANGED
@@ -147,6 +147,9 @@ void copy_blocks(const std::vector<torch::Tensor> &key_caches,
|
|
147 |
case torch::kBFloat16:
|
148 |
kernName = @"copy_blocks_bfloat16_t";
|
149 |
break;
|
|
|
|
|
|
|
150 |
default:
|
151 |
TORCH_CHECK(false, "Unsupported dtype for copy_blocks");
|
152 |
}
|
@@ -214,6 +217,16 @@ void reshape_and_cache(
|
|
214 |
const std::string &kv_cache_dtype, torch::Tensor &k_scale,
|
215 |
torch::Tensor &v_scale) {
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
TORCH_CHECK(key.device().is_mps() && value.device().is_mps() &&
|
218 |
key_cache.device().is_mps() && value_cache.device().is_mps(),
|
219 |
"All tensors must be on MPS device");
|
@@ -256,22 +269,51 @@ void reshape_and_cache(
|
|
256 |
}
|
257 |
|
258 |
NSString *kernName = nil;
|
|
|
|
|
|
|
259 |
switch (key.scalar_type()) {
|
260 |
case torch::kFloat:
|
261 |
-
|
262 |
break;
|
263 |
case torch::kHalf:
|
264 |
-
|
265 |
break;
|
266 |
case torch::kBFloat16:
|
267 |
-
|
268 |
break;
|
269 |
default:
|
270 |
TORCH_CHECK(false, "Unsupported dtype for reshape_and_cache");
|
271 |
}
|
272 |
-
|
273 |
-
|
274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
id<MTLComputePipelineState> pso =
|
277 |
[device newComputePipelineStateWithFunction:fn error:&error];
|
@@ -305,46 +347,59 @@ void reshape_and_cache(
|
|
305 |
options:MTLResourceStorageModeShared];
|
306 |
[enc setBuffer:slotMappingBuf offset:0 atIndex:4];
|
307 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
// Set parameters as individual buffers (matching mistralrs pattern)
|
309 |
id<MTLBuffer> keyStrideBuf =
|
310 |
[device newBufferWithBytes:&key_stride
|
311 |
length:sizeof(int32_t)
|
312 |
options:MTLResourceStorageModeShared];
|
313 |
-
[enc setBuffer:keyStrideBuf offset:0 atIndex:
|
314 |
|
315 |
id<MTLBuffer> valueStrideBuf =
|
316 |
[device newBufferWithBytes:&value_stride
|
317 |
length:sizeof(int32_t)
|
318 |
options:MTLResourceStorageModeShared];
|
319 |
-
[enc setBuffer:valueStrideBuf offset:0 atIndex:
|
320 |
|
321 |
const int32_t num_heads_i32 = static_cast<int32_t>(num_heads);
|
322 |
id<MTLBuffer> numHeadsBuf =
|
323 |
[device newBufferWithBytes:&num_heads_i32
|
324 |
length:sizeof(int32_t)
|
325 |
options:MTLResourceStorageModeShared];
|
326 |
-
[enc setBuffer:numHeadsBuf offset:0 atIndex:
|
327 |
|
328 |
const int32_t head_size_i32 = static_cast<int32_t>(head_size);
|
329 |
id<MTLBuffer> headSizeBuf =
|
330 |
[device newBufferWithBytes:&head_size_i32
|
331 |
length:sizeof(int32_t)
|
332 |
options:MTLResourceStorageModeShared];
|
333 |
-
[enc setBuffer:headSizeBuf offset:0 atIndex:
|
334 |
|
335 |
const int32_t block_size_i32 = static_cast<int32_t>(block_size);
|
336 |
id<MTLBuffer> blockSizeBuf =
|
337 |
[device newBufferWithBytes:&block_size_i32
|
338 |
length:sizeof(int32_t)
|
339 |
options:MTLResourceStorageModeShared];
|
340 |
-
[enc setBuffer:blockSizeBuf offset:0 atIndex:
|
341 |
|
342 |
const int32_t x_i32 = static_cast<int32_t>(x);
|
343 |
id<MTLBuffer> xBuf =
|
344 |
[device newBufferWithBytes:&x_i32
|
345 |
length:sizeof(int32_t)
|
346 |
options:MTLResourceStorageModeShared];
|
347 |
-
[enc setBuffer:xBuf offset:0 atIndex:
|
348 |
|
349 |
const uint64_t threads_per_threadgroup =
|
350 |
std::min<uint64_t>(512, num_heads * head_size);
|
|
|
147 |
case torch::kBFloat16:
|
148 |
kernName = @"copy_blocks_bfloat16_t";
|
149 |
break;
|
150 |
+
case torch::kUInt8:
|
151 |
+
kernName = @"copy_blocks_uchar";
|
152 |
+
break;
|
153 |
default:
|
154 |
TORCH_CHECK(false, "Unsupported dtype for copy_blocks");
|
155 |
}
|
|
|
217 |
const std::string &kv_cache_dtype, torch::Tensor &k_scale,
|
218 |
torch::Tensor &v_scale) {
|
219 |
|
220 |
+
// Determine cache dtype and FP8 usage
|
221 |
+
torch::ScalarType cache_dtype = key_cache.scalar_type();
|
222 |
+
bool use_fp8_scales = (kv_cache_dtype == "fp8" || kv_cache_dtype == "fp8_e4m3");
|
223 |
+
if (use_fp8_scales) {
|
224 |
+
TORCH_CHECK(cache_dtype == torch::kUInt8, "FP8 cache requires UInt8 tensor type");
|
225 |
+
TORCH_CHECK(k_scale.numel() == 1 && v_scale.numel() == 1, "FP8 scales must be scalars");
|
226 |
+
TORCH_CHECK(k_scale.scalar_type() == torch::kFloat32 && v_scale.scalar_type() == torch::kFloat32,
|
227 |
+
"FP8 scales must be float32");
|
228 |
+
}
|
229 |
+
|
230 |
TORCH_CHECK(key.device().is_mps() && value.device().is_mps() &&
|
231 |
key_cache.device().is_mps() && value_cache.device().is_mps(),
|
232 |
"All tensors must be on MPS device");
|
|
|
269 |
}
|
270 |
|
271 |
NSString *kernName = nil;
|
272 |
+
std::string kv_dtype_str, cache_dtype_str;
|
273 |
+
|
274 |
+
// Get KV dtype string
|
275 |
switch (key.scalar_type()) {
|
276 |
case torch::kFloat:
|
277 |
+
kv_dtype_str = "float";
|
278 |
break;
|
279 |
case torch::kHalf:
|
280 |
+
kv_dtype_str = "half";
|
281 |
break;
|
282 |
case torch::kBFloat16:
|
283 |
+
kv_dtype_str = "bfloat16_t";
|
284 |
break;
|
285 |
default:
|
286 |
TORCH_CHECK(false, "Unsupported dtype for reshape_and_cache");
|
287 |
}
|
288 |
+
|
289 |
+
// Get cache dtype string
|
290 |
+
switch (cache_dtype) {
|
291 |
+
case torch::kFloat:
|
292 |
+
cache_dtype_str = "float";
|
293 |
+
break;
|
294 |
+
case torch::kHalf:
|
295 |
+
cache_dtype_str = "half";
|
296 |
+
break;
|
297 |
+
case torch::kBFloat16:
|
298 |
+
cache_dtype_str = "bfloat16_t";
|
299 |
+
break;
|
300 |
+
case torch::kUInt8:
|
301 |
+
cache_dtype_str = "uchar";
|
302 |
+
break;
|
303 |
+
default:
|
304 |
+
TORCH_CHECK(false, "Unsupported cache dtype for reshape_and_cache");
|
305 |
+
}
|
306 |
+
|
307 |
+
std::string kernName_str = "reshape_and_cache_kv_" + kv_dtype_str + "_cache_" + cache_dtype_str;
|
308 |
+
kernName = [NSString stringWithUTF8String:kernName_str.c_str()];
|
309 |
+
|
310 |
+
// Create function constants for FP8 support
|
311 |
+
MTLFunctionConstantValues *constants = [[MTLFunctionConstantValues alloc] init];
|
312 |
+
[constants setConstantValue:&use_fp8_scales type:MTLDataTypeBool atIndex:10];
|
313 |
+
|
314 |
+
id<MTLFunction> fn = [lib newFunctionWithName:kernName constantValues:constants error:&error];
|
315 |
+
TORCH_CHECK(fn, "Missing Metal kernel function: ", kernName.UTF8String,
|
316 |
+
error ? [NSString stringWithFormat:@": %@", error.localizedDescription].UTF8String : "");
|
317 |
|
318 |
id<MTLComputePipelineState> pso =
|
319 |
[device newComputePipelineStateWithFunction:fn error:&error];
|
|
|
347 |
options:MTLResourceStorageModeShared];
|
348 |
[enc setBuffer:slotMappingBuf offset:0 atIndex:4];
|
349 |
|
350 |
+
// k_scale and v_scale buffers (for FP8)
|
351 |
+
if (use_fp8_scales) {
|
352 |
+
[enc setBuffer:getMTLBufferStorage(k_scale)
|
353 |
+
offset:k_scale.storage_offset() * k_scale.element_size()
|
354 |
+
atIndex:5];
|
355 |
+
[enc setBuffer:getMTLBufferStorage(v_scale)
|
356 |
+
offset:v_scale.storage_offset() * v_scale.element_size()
|
357 |
+
atIndex:6];
|
358 |
+
} else {
|
359 |
+
// For non-FP8, we still need to increment buffer indices
|
360 |
+
// The Metal kernel expects buffers at indices 5 and 6 even if unused
|
361 |
+
}
|
362 |
+
|
363 |
// Set parameters as individual buffers (matching mistralrs pattern)
|
364 |
id<MTLBuffer> keyStrideBuf =
|
365 |
[device newBufferWithBytes:&key_stride
|
366 |
length:sizeof(int32_t)
|
367 |
options:MTLResourceStorageModeShared];
|
368 |
+
[enc setBuffer:keyStrideBuf offset:0 atIndex:7];
|
369 |
|
370 |
id<MTLBuffer> valueStrideBuf =
|
371 |
[device newBufferWithBytes:&value_stride
|
372 |
length:sizeof(int32_t)
|
373 |
options:MTLResourceStorageModeShared];
|
374 |
+
[enc setBuffer:valueStrideBuf offset:0 atIndex:8];
|
375 |
|
376 |
const int32_t num_heads_i32 = static_cast<int32_t>(num_heads);
|
377 |
id<MTLBuffer> numHeadsBuf =
|
378 |
[device newBufferWithBytes:&num_heads_i32
|
379 |
length:sizeof(int32_t)
|
380 |
options:MTLResourceStorageModeShared];
|
381 |
+
[enc setBuffer:numHeadsBuf offset:0 atIndex:9];
|
382 |
|
383 |
const int32_t head_size_i32 = static_cast<int32_t>(head_size);
|
384 |
id<MTLBuffer> headSizeBuf =
|
385 |
[device newBufferWithBytes:&head_size_i32
|
386 |
length:sizeof(int32_t)
|
387 |
options:MTLResourceStorageModeShared];
|
388 |
+
[enc setBuffer:headSizeBuf offset:0 atIndex:10];
|
389 |
|
390 |
const int32_t block_size_i32 = static_cast<int32_t>(block_size);
|
391 |
id<MTLBuffer> blockSizeBuf =
|
392 |
[device newBufferWithBytes:&block_size_i32
|
393 |
length:sizeof(int32_t)
|
394 |
options:MTLResourceStorageModeShared];
|
395 |
+
[enc setBuffer:blockSizeBuf offset:0 atIndex:11];
|
396 |
|
397 |
const int32_t x_i32 = static_cast<int32_t>(x);
|
398 |
id<MTLBuffer> xBuf =
|
399 |
[device newBufferWithBytes:&x_i32
|
400 |
length:sizeof(int32_t)
|
401 |
options:MTLResourceStorageModeShared];
|
402 |
+
[enc setBuffer:xBuf offset:0 atIndex:12];
|
403 |
|
404 |
const uint64_t threads_per_threadgroup =
|
405 |
std::min<uint64_t>(512, num_heads * head_size);
|
paged-attention-metal/cache/copy_blocks.metal
CHANGED
@@ -48,3 +48,4 @@ template <typename T>
|
|
48 |
instantiate_copy_blocks(float);
|
49 |
instantiate_copy_blocks(bfloat16_t);
|
50 |
instantiate_copy_blocks(half);
|
|
|
|
48 |
instantiate_copy_blocks(float);
|
49 |
instantiate_copy_blocks(bfloat16_t);
|
50 |
instantiate_copy_blocks(half);
|
51 |
+
instantiate_copy_blocks(uchar);
|
paged-attention-metal/cache/reshape_and_cache.metal
CHANGED
@@ -1,23 +1,56 @@
|
|
1 |
#include "../utils.metal"
|
|
|
2 |
#include <metal_stdlib>
|
3 |
|
4 |
using namespace metal;
|
5 |
|
6 |
-
template <typename
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
[[kernel]] void reshape_and_cache(
|
8 |
-
const device
|
9 |
[[buffer(0)]], // [num_tokens, num_heads, head_size]
|
10 |
-
const device
|
11 |
[[buffer(1)]], // [num_tokens, num_heads, head_size]
|
12 |
-
device
|
13 |
[[buffer(2)]], // [num_blocks, num_heads, head_size/x, block_size, x]
|
14 |
-
device
|
15 |
[[buffer(3)]], // [num_blocks, num_heads, head_size, block_size]
|
16 |
const device int64_t *__restrict__ slot_mapping
|
17 |
[[buffer(4)]], // [num_tokens]
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
uint gid [[threadgroup_position_in_grid]],
|
22 |
uint tid [[thread_position_in_threadgroup]],
|
23 |
uint threads_per_threadgroup [[threads_per_threadgroup]]) {
|
@@ -49,29 +82,47 @@ template <typename T>
|
|
49 |
block_idx * num_heads * head_size * block_size +
|
50 |
head_idx * head_size * block_size + head_offset * block_size +
|
51 |
block_offset;
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
}
|
55 |
}
|
56 |
|
57 |
-
#define instantiate_reshape_and_cache(
|
58 |
-
template [[host_name("
|
59 |
-
|
60 |
-
|
61 |
-
const device
|
62 |
-
device
|
63 |
-
device
|
|
|
64 |
const device int64_t *__restrict__ slot_mapping [[buffer(4)]], \
|
65 |
-
|
66 |
-
|
67 |
-
device const int &
|
|
|
|
|
|
|
|
|
|
|
68 |
uint gid [[threadgroup_position_in_grid]], \
|
69 |
uint tid [[thread_position_in_threadgroup]], \
|
70 |
uint threads_per_threadgroup [[threads_per_threadgroup]]);
|
71 |
|
72 |
-
instantiate_reshape_and_cache(float);
|
73 |
-
instantiate_reshape_and_cache(bfloat16_t);
|
74 |
-
instantiate_reshape_and_cache(half);
|
|
|
|
|
|
|
|
|
75 |
|
76 |
// Flash version with different cache layout: [num_blocks, block_size,
|
77 |
// num_heads, head_size]
|
|
|
1 |
#include "../utils.metal"
|
2 |
+
#include "../float8.metal"
|
3 |
#include <metal_stdlib>
|
4 |
|
5 |
using namespace metal;
|
6 |
|
7 |
+
template <typename KV_T, typename CACHE_T>
|
8 |
+
inline CACHE_T to_cache(KV_T v) = delete;
|
9 |
+
|
10 |
+
template <> inline uchar to_cache<float, uchar>(float v) {
|
11 |
+
return float_to_fp8_e4m3(v);
|
12 |
+
}
|
13 |
+
|
14 |
+
template <> inline uchar to_cache<bfloat16_t, uchar>(bfloat16_t v) {
|
15 |
+
return float_to_fp8_e4m3((float)v);
|
16 |
+
}
|
17 |
+
|
18 |
+
template <> inline uchar to_cache<half, uchar>(half v) {
|
19 |
+
return float_to_fp8_e4m3((float)v);
|
20 |
+
}
|
21 |
+
|
22 |
+
template <> inline float to_cache<float, float>(float v) { return v; }
|
23 |
+
|
24 |
+
template <> inline bfloat16_t to_cache<bfloat16_t, bfloat16_t>(bfloat16_t v) {
|
25 |
+
return v;
|
26 |
+
}
|
27 |
+
|
28 |
+
template <> inline half to_cache<half, half>(half v) { return v; }
|
29 |
+
|
30 |
+
constant bool use_fp8_scales [[function_constant(10)]];
|
31 |
+
|
32 |
+
template <typename KV_T, typename CACHE_T>
|
33 |
[[kernel]] void reshape_and_cache(
|
34 |
+
const device KV_T *__restrict__ key
|
35 |
[[buffer(0)]], // [num_tokens, num_heads, head_size]
|
36 |
+
const device KV_T *__restrict__ value
|
37 |
[[buffer(1)]], // [num_tokens, num_heads, head_size]
|
38 |
+
device CACHE_T *__restrict__ key_cache
|
39 |
[[buffer(2)]], // [num_blocks, num_heads, head_size/x, block_size, x]
|
40 |
+
device CACHE_T *__restrict__ value_cache
|
41 |
[[buffer(3)]], // [num_blocks, num_heads, head_size, block_size]
|
42 |
const device int64_t *__restrict__ slot_mapping
|
43 |
[[buffer(4)]], // [num_tokens]
|
44 |
+
const device float *__restrict__ k_scale
|
45 |
+
[[buffer(5)]], // [1] - only used when use_fp8_scales
|
46 |
+
const device float *__restrict__ v_scale
|
47 |
+
[[buffer(6)]], // [1] - only used when use_fp8_scales
|
48 |
+
device const int &key_stride [[buffer(7)]],
|
49 |
+
device const int &value_stride [[buffer(8)]],
|
50 |
+
device const int &num_heads [[buffer(9)]],
|
51 |
+
device const int &head_size [[buffer(10)]],
|
52 |
+
device const int &block_size [[buffer(11)]],
|
53 |
+
device const int &x [[buffer(12)]],
|
54 |
uint gid [[threadgroup_position_in_grid]],
|
55 |
uint tid [[thread_position_in_threadgroup]],
|
56 |
uint threads_per_threadgroup [[threads_per_threadgroup]]) {
|
|
|
82 |
block_idx * num_heads * head_size * block_size +
|
83 |
head_idx * head_size * block_size + head_offset * block_size +
|
84 |
block_offset;
|
85 |
+
|
86 |
+
if (use_fp8_scales) {
|
87 |
+
key_cache[tgt_key_idx] =
|
88 |
+
to_cache<KV_T, CACHE_T>(KV_T((float)key[src_key_idx] / *k_scale));
|
89 |
+
value_cache[tgt_value_idx] =
|
90 |
+
to_cache<KV_T, CACHE_T>(KV_T((float)value[src_value_idx] / *v_scale));
|
91 |
+
} else {
|
92 |
+
key_cache[tgt_key_idx] = to_cache<KV_T, CACHE_T>(key[src_key_idx]);
|
93 |
+
value_cache[tgt_value_idx] = to_cache<KV_T, CACHE_T>(value[src_value_idx]);
|
94 |
+
}
|
95 |
}
|
96 |
}
|
97 |
|
98 |
+
#define instantiate_reshape_and_cache(kv_type, cache_type) \
|
99 |
+
template [[host_name("reshape_and_cache_kv_" #kv_type \
|
100 |
+
"_cache_" #cache_type)]] [[kernel]] void \
|
101 |
+
reshape_and_cache<kv_type, cache_type>( \
|
102 |
+
const device kv_type *__restrict__ key [[buffer(0)]], \
|
103 |
+
const device kv_type *__restrict__ value [[buffer(1)]], \
|
104 |
+
device cache_type *__restrict__ key_cache [[buffer(2)]], \
|
105 |
+
device cache_type *__restrict__ value_cache [[buffer(3)]], \
|
106 |
const device int64_t *__restrict__ slot_mapping [[buffer(4)]], \
|
107 |
+
const device float *__restrict__ k_scale [[buffer(5)]], \
|
108 |
+
const device float *__restrict__ v_scale [[buffer(6)]], \
|
109 |
+
device const int &key_stride [[buffer(7)]], \
|
110 |
+
device const int &value_stride [[buffer(8)]], \
|
111 |
+
device const int &num_heads [[buffer(9)]], \
|
112 |
+
device const int &head_size [[buffer(10)]], \
|
113 |
+
device const int &block_size [[buffer(11)]], \
|
114 |
+
device const int &x [[buffer(12)]], \
|
115 |
uint gid [[threadgroup_position_in_grid]], \
|
116 |
uint tid [[thread_position_in_threadgroup]], \
|
117 |
uint threads_per_threadgroup [[threads_per_threadgroup]]);
|
118 |
|
119 |
+
instantiate_reshape_and_cache(float, float);
|
120 |
+
instantiate_reshape_and_cache(bfloat16_t, bfloat16_t);
|
121 |
+
instantiate_reshape_and_cache(half, half);
|
122 |
+
|
123 |
+
instantiate_reshape_and_cache(float, uchar);
|
124 |
+
instantiate_reshape_and_cache(bfloat16_t, uchar);
|
125 |
+
instantiate_reshape_and_cache(half, uchar);
|
126 |
|
127 |
// Flash version with different cache layout: [num_blocks, block_size,
|
128 |
// num_heads, head_size]
|
paged-attention-metal/convert_fp8.metal
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include "float8.metal"
|
2 |
+
#include "utils.metal"
|
3 |
+
#include <metal_stdlib>
|
4 |
+
|
5 |
+
using namespace metal;
|
6 |
+
|
7 |
+
// Convert between different precision formats for cache tensors
|
8 |
+
// This kernel handles conversions like float->fp8, fp8->float, etc.
|
9 |
+
|
10 |
+
template <typename SRC_T, typename DST_T>
|
11 |
+
[[kernel]] void convert_fp8_kernel(
|
12 |
+
const device SRC_T *__restrict__ src [[buffer(0)]],
|
13 |
+
device DST_T *__restrict__ dst [[buffer(1)]],
|
14 |
+
const device float &scale [[buffer(2)]],
|
15 |
+
const device uint32_t &num_elements [[buffer(3)]],
|
16 |
+
uint gid [[thread_position_in_grid]]) {
|
17 |
+
|
18 |
+
if (gid >= num_elements) {
|
19 |
+
return;
|
20 |
+
}
|
21 |
+
|
22 |
+
// Load source value
|
23 |
+
SRC_T src_val = src[gid];
|
24 |
+
|
25 |
+
// Convert based on source and destination types
|
26 |
+
if constexpr (is_same_v<SRC_T, uchar> && !is_same_v<DST_T, uchar>) {
|
27 |
+
// FP8 -> higher precision (dequantization)
|
28 |
+
float fp32_val = fp8_e4m3_to_float(src_val) * scale;
|
29 |
+
dst[gid] = static_cast<DST_T>(fp32_val);
|
30 |
+
} else if constexpr (!is_same_v<SRC_T, uchar> && is_same_v<DST_T, uchar>) {
|
31 |
+
// Higher precision -> FP8 (quantization)
|
32 |
+
float fp32_val = static_cast<float>(src_val) / scale;
|
33 |
+
dst[gid] = float_to_fp8_e4m3(fp32_val);
|
34 |
+
} else if constexpr (is_same_v<SRC_T, uchar> && is_same_v<DST_T, uchar>) {
|
35 |
+
// FP8 -> FP8 (with rescaling)
|
36 |
+
float fp32_val = fp8_e4m3_to_float(src_val) * scale;
|
37 |
+
dst[gid] = float_to_fp8_e4m3(fp32_val);
|
38 |
+
} else {
|
39 |
+
// Regular precision -> regular precision (with scaling)
|
40 |
+
float fp32_val = static_cast<float>(src_val) * scale;
|
41 |
+
dst[gid] = static_cast<DST_T>(fp32_val);
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
// Instantiate all required combinations
|
46 |
+
#define INSTANTIATE_CONVERT_FP8(src_type, dst_type) \
|
47 |
+
template [[host_name("convert_fp8_" #src_type "_to_" #dst_type)]] \
|
48 |
+
[[kernel]] void convert_fp8_kernel<src_type, dst_type>( \
|
49 |
+
const device src_type *__restrict__ src [[buffer(0)]], \
|
50 |
+
device dst_type *__restrict__ dst [[buffer(1)]], \
|
51 |
+
const device float &scale [[buffer(2)]], \
|
52 |
+
const device uint32_t &num_elements [[buffer(3)]], \
|
53 |
+
uint gid [[thread_position_in_grid]]);
|
54 |
+
|
55 |
+
// FP8 to other formats (dequantization)
|
56 |
+
INSTANTIATE_CONVERT_FP8(uchar, float);
|
57 |
+
INSTANTIATE_CONVERT_FP8(uchar, half);
|
58 |
+
INSTANTIATE_CONVERT_FP8(uchar, bfloat16_t);
|
59 |
+
|
60 |
+
// Other formats to FP8 (quantization)
|
61 |
+
INSTANTIATE_CONVERT_FP8(float, uchar);
|
62 |
+
INSTANTIATE_CONVERT_FP8(half, uchar);
|
63 |
+
INSTANTIATE_CONVERT_FP8(bfloat16_t, uchar);
|
64 |
+
|
65 |
+
// FP8 to FP8 (rescaling)
|
66 |
+
INSTANTIATE_CONVERT_FP8(uchar, uchar);
|
67 |
+
|
68 |
+
// Regular precision conversions with scaling
|
69 |
+
INSTANTIATE_CONVERT_FP8(float, float);
|
70 |
+
INSTANTIATE_CONVERT_FP8(float, half);
|
71 |
+
INSTANTIATE_CONVERT_FP8(float, bfloat16_t);
|
72 |
+
INSTANTIATE_CONVERT_FP8(half, float);
|
73 |
+
INSTANTIATE_CONVERT_FP8(half, half);
|
74 |
+
INSTANTIATE_CONVERT_FP8(half, bfloat16_t);
|
75 |
+
INSTANTIATE_CONVERT_FP8(bfloat16_t, float);
|
76 |
+
INSTANTIATE_CONVERT_FP8(bfloat16_t, half);
|
77 |
+
INSTANTIATE_CONVERT_FP8(bfloat16_t, bfloat16_t);
|
paged-attention-metal/convert_fp8.mm
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
#include <torch/torch.h>
|
2 |
|
3 |
#import <Foundation/Foundation.h>
|
@@ -24,7 +26,113 @@ static std::string getModuleDirectory() {
|
|
24 |
return ".";
|
25 |
}
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
void convert_fp8(torch::Tensor &dst_cache, torch::Tensor &src_cache,
|
28 |
const double scale, const std::string &kv_cache_dtype) {
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
}
|
|
|
1 |
+
#include <ATen/mps/MPSDevice.h>
|
2 |
+
#include <ATen/mps/MPSStream.h>
|
3 |
#include <torch/torch.h>
|
4 |
|
5 |
#import <Foundation/Foundation.h>
|
|
|
26 |
return ".";
|
27 |
}
|
28 |
|
29 |
+
// Helper function to get conversion kernel name
|
30 |
+
static std::string getConvertKernelName(torch::ScalarType src_dtype, torch::ScalarType dst_dtype) {
|
31 |
+
std::string src_str, dst_str;
|
32 |
+
|
33 |
+
auto dtype_to_string = [](torch::ScalarType dtype) -> std::string {
|
34 |
+
switch (dtype) {
|
35 |
+
case torch::kFloat: return "float";
|
36 |
+
case torch::kHalf: return "half";
|
37 |
+
case torch::kBFloat16: return "bfloat16_t";
|
38 |
+
case torch::kUInt8: return "uchar";
|
39 |
+
default:
|
40 |
+
TORCH_CHECK(false, "Unsupported dtype for convert_fp8: ", dtype);
|
41 |
+
}
|
42 |
+
};
|
43 |
+
|
44 |
+
src_str = dtype_to_string(src_dtype);
|
45 |
+
dst_str = dtype_to_string(dst_dtype);
|
46 |
+
|
47 |
+
return "convert_fp8_" + src_str + "_to_" + dst_str;
|
48 |
+
}
|
49 |
+
|
50 |
void convert_fp8(torch::Tensor &dst_cache, torch::Tensor &src_cache,
|
51 |
const double scale, const std::string &kv_cache_dtype) {
|
52 |
+
// Validate input tensors
|
53 |
+
TORCH_CHECK(src_cache.device().is_mps() && dst_cache.device().is_mps(),
|
54 |
+
"Both tensors must be on MPS device");
|
55 |
+
TORCH_CHECK(src_cache.device() == dst_cache.device(),
|
56 |
+
"Source and destination tensors must be on the same device");
|
57 |
+
TORCH_CHECK(src_cache.numel() == dst_cache.numel(),
|
58 |
+
"Source and destination tensors must have the same number of elements");
|
59 |
+
TORCH_CHECK(src_cache.is_contiguous() && dst_cache.is_contiguous(),
|
60 |
+
"Both tensors must be contiguous");
|
61 |
+
|
62 |
+
const uint32_t num_elements = static_cast<uint32_t>(src_cache.numel());
|
63 |
+
if (num_elements == 0) {
|
64 |
+
return; // Nothing to convert
|
65 |
+
}
|
66 |
+
|
67 |
+
// Determine conversion kernel name
|
68 |
+
std::string kernel_name = getConvertKernelName(src_cache.scalar_type(), dst_cache.scalar_type());
|
69 |
+
|
70 |
+
@autoreleasepool {
|
71 |
+
at::mps::MPSStream *stream = at::mps::getCurrentMPSStream();
|
72 |
+
TORCH_CHECK(stream, "Failed to get current MPS stream");
|
73 |
+
|
74 |
+
id<MTLDevice> device = stream->device();
|
75 |
+
id<MTLCommandBuffer> cmdBuf = stream->commandBuffer();
|
76 |
+
TORCH_CHECK(cmdBuf, "Failed to get command buffer");
|
77 |
+
|
78 |
+
// Load Metal library
|
79 |
+
std::string moduleDir = getModuleDirectory();
|
80 |
+
std::string metallibPath = moduleDir + "/" + METALLIB_PATH;
|
81 |
+
NSString *metallibPathStr = [NSString stringWithUTF8String:metallibPath.c_str()];
|
82 |
+
NSURL *metallibURL = [NSURL fileURLWithPath:metallibPathStr];
|
83 |
+
NSError *error = nil;
|
84 |
+
id<MTLLibrary> lib = [device newLibraryWithURL:metallibURL error:&error];
|
85 |
+
TORCH_CHECK(lib, "Failed to load Metal library at ", metallibPath, ": ",
|
86 |
+
error ? error.localizedDescription.UTF8String : "unknown error");
|
87 |
+
|
88 |
+
// Create kernel function
|
89 |
+
NSString *kernelNameStr = [NSString stringWithUTF8String:kernel_name.c_str()];
|
90 |
+
id<MTLFunction> fn = [lib newFunctionWithName:kernelNameStr];
|
91 |
+
TORCH_CHECK(fn, "Failed to find Metal kernel function: ", kernel_name);
|
92 |
+
|
93 |
+
id<MTLComputePipelineState> pso = [device newComputePipelineStateWithFunction:fn error:&error];
|
94 |
+
TORCH_CHECK(pso, "Failed to create compute pipeline state: ",
|
95 |
+
error ? error.localizedDescription.UTF8String : "unknown error");
|
96 |
+
|
97 |
+
dispatch_queue_t q = stream->queue();
|
98 |
+
dispatch_sync(q, ^{
|
99 |
+
id<MTLComputeCommandEncoder> enc = [cmdBuf computeCommandEncoder];
|
100 |
+
TORCH_CHECK(enc, "Failed to create compute encoder");
|
101 |
+
|
102 |
+
[enc setComputePipelineState:pso];
|
103 |
+
|
104 |
+
// Set buffers
|
105 |
+
[enc setBuffer:getMTLBufferStorage(src_cache)
|
106 |
+
offset:src_cache.storage_offset() * src_cache.element_size()
|
107 |
+
atIndex:0];
|
108 |
+
[enc setBuffer:getMTLBufferStorage(dst_cache)
|
109 |
+
offset:dst_cache.storage_offset() * dst_cache.element_size()
|
110 |
+
atIndex:1];
|
111 |
+
|
112 |
+
// Set scale parameter
|
113 |
+
float scale_f32 = static_cast<float>(scale);
|
114 |
+
id<MTLBuffer> scaleBuf = [device newBufferWithBytes:&scale_f32
|
115 |
+
length:sizeof(float)
|
116 |
+
options:MTLResourceStorageModeShared];
|
117 |
+
[enc setBuffer:scaleBuf offset:0 atIndex:2];
|
118 |
+
|
119 |
+
// Set num_elements parameter
|
120 |
+
id<MTLBuffer> numElementsBuf = [device newBufferWithBytes:&num_elements
|
121 |
+
length:sizeof(uint32_t)
|
122 |
+
options:MTLResourceStorageModeShared];
|
123 |
+
[enc setBuffer:numElementsBuf offset:0 atIndex:3];
|
124 |
+
|
125 |
+
// Dispatch threads
|
126 |
+
const uint32_t threads_per_threadgroup = std::min<uint32_t>(1024, num_elements);
|
127 |
+
const uint32_t threadgroups = (num_elements + threads_per_threadgroup - 1) / threads_per_threadgroup;
|
128 |
+
|
129 |
+
MTLSize threadsPerThreadgroup = MTLSizeMake(threads_per_threadgroup, 1, 1);
|
130 |
+
MTLSize threadgroupsPerGrid = MTLSizeMake(threadgroups, 1, 1);
|
131 |
+
|
132 |
+
[enc dispatchThreadgroups:threadgroupsPerGrid threadsPerThreadgroup:threadsPerThreadgroup];
|
133 |
+
[enc endEncoding];
|
134 |
+
});
|
135 |
+
|
136 |
+
stream->synchronize(at::mps::SyncType::COMMIT);
|
137 |
+
}
|
138 |
}
|
paged-attention-metal/float8.metal
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <metal_stdlib>
|
2 |
+
using namespace metal;
|
3 |
+
|
4 |
+
// Helpers ------------------------------------------------------------
|
5 |
+
static inline uint as_bits(float x) { return as_type<uint>(x); }
|
6 |
+
static inline float from_bits(uint b) { return as_type<float>(b); }
|
7 |
+
|
8 |
+
// -------------------------------------------------------------------
|
9 |
+
// FP8 E4M3 (bias = 7)
|
10 |
+
// -------------------------------------------------------------------
|
11 |
+
inline float fp8_e4m3_to_float(uchar v) {
|
12 |
+
const uint s = v >> 7;
|
13 |
+
const uint exp = (v >> 3) & 0xF;
|
14 |
+
const uint man = v & 0x7;
|
15 |
+
|
16 |
+
if (exp == 0) { // zero / sub-normal
|
17 |
+
if (man == 0)
|
18 |
+
return s ? -0.f : 0.f;
|
19 |
+
const float m = float(man) / 8.f; // already scaled by 2^-3
|
20 |
+
float val = ldexp(m, 1 - 7); // 2^(1-bias) = 2^-6
|
21 |
+
return s ? -val : val;
|
22 |
+
}
|
23 |
+
|
24 |
+
if (exp == 0xF) { // Inf / NaN (E4M3FN keeps only NaN)
|
25 |
+
if (man != 0)
|
26 |
+
return NAN;
|
27 |
+
return s ? -INFINITY : INFINITY;
|
28 |
+
}
|
29 |
+
|
30 |
+
const float m = 1.f + float(man) / 8.f;
|
31 |
+
float val = ldexp(m, int(exp) - 7);
|
32 |
+
return s ? -val : val;
|
33 |
+
}
|
34 |
+
|
35 |
+
// -------------------------------------------------------------------
|
36 |
+
// FP8 E5M2 (bias = 15)
|
37 |
+
// -------------------------------------------------------------------
|
38 |
+
inline float fp8_e5m2_to_float(uchar v) {
|
39 |
+
const uint s = v >> 7;
|
40 |
+
const uint exp = (v >> 2) & 0x1F;
|
41 |
+
const uint man = v & 0x3;
|
42 |
+
|
43 |
+
if (exp == 0) {
|
44 |
+
if (man == 0)
|
45 |
+
return s ? -0.f : 0.f;
|
46 |
+
const float m = float(man) / 4.f;
|
47 |
+
float val = ldexp(m, 1 - 15); // 2^(1-bias) = 2^-14
|
48 |
+
return s ? -val : val;
|
49 |
+
}
|
50 |
+
|
51 |
+
if (exp == 0x1F) {
|
52 |
+
if (man != 0)
|
53 |
+
return NAN;
|
54 |
+
return s ? -INFINITY : INFINITY;
|
55 |
+
}
|
56 |
+
|
57 |
+
const float m = 1.f + float(man) / 4.f;
|
58 |
+
float val = ldexp(m, int(exp) - 15);
|
59 |
+
return s ? -val : val;
|
60 |
+
}
|
61 |
+
|
62 |
+
// -------------------------------------------------------------------
|
63 |
+
// Encoding helpers (round-to-nearest-even, gradual under-flow, sat-to-∞)
|
64 |
+
// -------------------------------------------------------------------
|
65 |
+
namespace detail {
|
66 |
+
template <int EXP_BITS, int MAN_BITS, int BIAS>
|
67 |
+
inline uchar fp32_to_fp8(float f) {
|
68 |
+
const uint bits = as_bits(f);
|
69 |
+
const uint s = bits >> 31;
|
70 |
+
const uint abs = bits & 0x7FFFFFFF;
|
71 |
+
|
72 |
+
// NaN propagates, Inf saturates
|
73 |
+
if (abs >= 0x7F800000u) {
|
74 |
+
return uchar((s << 7) | (((1u << EXP_BITS) - 1u) << MAN_BITS) |
|
75 |
+
(abs != 0x7F800000u));
|
76 |
+
}
|
77 |
+
|
78 |
+
int e = int((abs >> 23) & 0xFF) - 127; // unbiased exponent
|
79 |
+
uint m = abs & 0x7FFFFFu; // 23-bit mantissa
|
80 |
+
const int EXP_MAX = (1 << EXP_BITS) - 2; // last finite exponent
|
81 |
+
|
82 |
+
// ---------- Normal path -------------------------------------------------
|
83 |
+
int e_fp8 = e + BIAS;
|
84 |
+
if (e_fp8 >= 1 && e_fp8 <= EXP_MAX) {
|
85 |
+
// round-to-nearest-even
|
86 |
+
const int shift = 23 - MAN_BITS;
|
87 |
+
uint mant = m >> shift;
|
88 |
+
const uint lsb = mant & 1u;
|
89 |
+
const uint round = (m >> (shift - 1)) & 1u;
|
90 |
+
const uint sticky = (m & ((1u << (shift - 1)) - 1u)) != 0u;
|
91 |
+
mant += (round & (sticky | lsb));
|
92 |
+
if (mant >> MAN_BITS) { // mantissa overflow
|
93 |
+
mant = 0;
|
94 |
+
++e_fp8;
|
95 |
+
if (e_fp8 > EXP_MAX)
|
96 |
+
return uchar((s << 7) | (((1u << EXP_BITS) - 1u) << MAN_BITS)); // ∞
|
97 |
+
}
|
98 |
+
return uchar((s << 7) | (uint(e_fp8) << MAN_BITS) |
|
99 |
+
(mant & ((1u << MAN_BITS) - 1u)));
|
100 |
+
}
|
101 |
+
|
102 |
+
// ---------- Sub-normal / under-flow ------------------------------------
|
103 |
+
if (e_fp8 < 1 - MAN_BITS) // too small -> ±0
|
104 |
+
return uchar(s << 7);
|
105 |
+
|
106 |
+
// shift so that exponent becomes 1
|
107 |
+
int rshift = (1 - e_fp8) + (23 - MAN_BITS);
|
108 |
+
uint mant = (0x800000u | m); // implicit 1
|
109 |
+
uint rounded = (mant + (1u << (rshift - 1))) >> rshift;
|
110 |
+
if (rounded == 0)
|
111 |
+
return uchar(s << 7); // rounds to zero
|
112 |
+
|
113 |
+
return uchar((s << 7) | (rounded & ((1u << MAN_BITS) - 1u)));
|
114 |
+
}
|
115 |
+
} // namespace detail
|
116 |
+
|
117 |
+
inline uchar float_to_fp8_e4m3(float f) {
|
118 |
+
return detail::fp32_to_fp8<4, 3, 7>(f);
|
119 |
+
}
|
120 |
+
inline uchar float_to_fp8_e5m2(float f) {
|
121 |
+
return detail::fp32_to_fp8<5, 2, 15>(f);
|
122 |
+
}
|
paged-attention-metal/paged_attention.mm
CHANGED
@@ -28,7 +28,9 @@ static std::string getModuleDirectory() {
|
|
28 |
|
29 |
// Helper function to get kernel name based on dtype and parameters
|
30 |
static std::string getKernelName(const std::string &base_name,
|
31 |
-
torch::ScalarType dtype,
|
|
|
|
|
32 |
int block_size, int num_threads,
|
33 |
int num_simd_lanes, int partition_size = 0) {
|
34 |
std::string dtype_str;
|
@@ -46,8 +48,26 @@ static std::string getKernelName(const std::string &base_name,
|
|
46 |
TORCH_CHECK(false, "Unsupported dtype for paged attention: ", dtype);
|
47 |
}
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
std::string kernel_name =
|
50 |
-
base_name + "_" + dtype_str + "_hs" + std::to_string(head_size) + "_bs" +
|
51 |
std::to_string(block_size) + "_nt" + std::to_string(num_threads) +
|
52 |
"_nsl" + std::to_string(num_simd_lanes);
|
53 |
|
@@ -106,12 +126,19 @@ void paged_attention_v1(
|
|
106 |
const bool is_block_sparse = (blocksparse_vert_stride > 1);
|
107 |
|
108 |
// Validate block sparse is not supported yet
|
109 |
-
// TODO: support blocksparse
|
110 |
TORCH_CHECK(
|
111 |
!is_block_sparse,
|
112 |
"Block sparse attention is not yet supported in Metal implementation");
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
}
|
116 |
|
117 |
// Validate input tensors
|
@@ -147,7 +174,7 @@ void paged_attention_v1(
|
|
147 |
|
148 |
// Get kernel name - v1 kernels have partition_size=0 in their name
|
149 |
std::string kernel_name =
|
150 |
-
getKernelName("paged_attention", query.scalar_type(), head_size,
|
151 |
block_size, num_threads, num_simd_lanes, partition_size);
|
152 |
|
153 |
@autoreleasepool {
|
@@ -174,6 +201,7 @@ void paged_attention_v1(
|
|
174 |
type:MTLDataTypeBool
|
175 |
atIndex:10];
|
176 |
[constants setConstantValue:&use_alibi type:MTLDataTypeBool atIndex:20];
|
|
|
177 |
|
178 |
NSString *kernelNameStr =
|
179 |
[NSString stringWithUTF8String:kernel_name.c_str()];
|
@@ -233,6 +261,18 @@ void paged_attention_v1(
|
|
233 |
offset:value_cache.storage_offset() * value_cache.element_size()
|
234 |
atIndex:buffer_idx++];
|
235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
// num_kv_heads
|
237 |
int32_t num_kv_heads_i32 = static_cast<int32_t>(num_kv_heads);
|
238 |
[enc setBytes:&num_kv_heads_i32
|
@@ -324,13 +364,20 @@ void paged_attention_v2(
|
|
324 |
const int64_t blocksparse_head_sliding_step) {
|
325 |
const bool is_block_sparse = (blocksparse_vert_stride > 1);
|
326 |
|
327 |
-
// TODO: support blocksparse
|
328 |
// Validate block sparse is not supported yet
|
329 |
TORCH_CHECK(
|
330 |
!is_block_sparse,
|
331 |
"Block sparse attention is not yet supported in Metal implementation");
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
}
|
335 |
|
336 |
// Validate input tensors
|
@@ -365,7 +412,7 @@ void paged_attention_v2(
|
|
365 |
|
366 |
// Get kernel names
|
367 |
std::string kernel_name =
|
368 |
-
getKernelName("paged_attention", query.scalar_type(), head_size,
|
369 |
block_size, num_threads, num_simd_lanes, partition_size);
|
370 |
// Reduce kernel doesn't have block_size in its name
|
371 |
std::string reduce_kernel_name = "paged_attention_v2_reduce";
|
@@ -427,6 +474,9 @@ void paged_attention_v2(
|
|
427 |
[mainConstants setConstantValue:&use_alibi
|
428 |
type:MTLDataTypeBool
|
429 |
atIndex:20];
|
|
|
|
|
|
|
430 |
|
431 |
NSString *kernelNameStr =
|
432 |
[NSString stringWithUTF8String:kernel_name.c_str()];
|
@@ -485,6 +535,18 @@ void paged_attention_v2(
|
|
485 |
offset:value_cache.storage_offset() * value_cache.element_size()
|
486 |
atIndex:buffer_idx++];
|
487 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
// num_kv_heads
|
489 |
int32_t num_kv_heads_i32 = static_cast<int32_t>(num_kv_heads);
|
490 |
[enc setBytes:&num_kv_heads_i32
|
|
|
28 |
|
29 |
// Helper function to get kernel name based on dtype and parameters
|
30 |
static std::string getKernelName(const std::string &base_name,
|
31 |
+
torch::ScalarType dtype,
|
32 |
+
torch::ScalarType cache_dtype,
|
33 |
+
int head_size,
|
34 |
int block_size, int num_threads,
|
35 |
int num_simd_lanes, int partition_size = 0) {
|
36 |
std::string dtype_str;
|
|
|
48 |
TORCH_CHECK(false, "Unsupported dtype for paged attention: ", dtype);
|
49 |
}
|
50 |
|
51 |
+
std::string cache_dtype_str;
|
52 |
+
switch (cache_dtype) {
|
53 |
+
case torch::kFloat:
|
54 |
+
cache_dtype_str = "float";
|
55 |
+
break;
|
56 |
+
case torch::kHalf:
|
57 |
+
cache_dtype_str = "half";
|
58 |
+
break;
|
59 |
+
case torch::kBFloat16:
|
60 |
+
cache_dtype_str = "bfloat16_t";
|
61 |
+
break;
|
62 |
+
case torch::kUInt8:
|
63 |
+
cache_dtype_str = "uchar";
|
64 |
+
break;
|
65 |
+
default:
|
66 |
+
TORCH_CHECK(false, "Unsupported cache dtype for paged attention: ", cache_dtype);
|
67 |
+
}
|
68 |
+
|
69 |
std::string kernel_name =
|
70 |
+
base_name + "_" + dtype_str + "_cache_" + cache_dtype_str + "_hs" + std::to_string(head_size) + "_bs" +
|
71 |
std::to_string(block_size) + "_nt" + std::to_string(num_threads) +
|
72 |
"_nsl" + std::to_string(num_simd_lanes);
|
73 |
|
|
|
126 |
const bool is_block_sparse = (blocksparse_vert_stride > 1);
|
127 |
|
128 |
// Validate block sparse is not supported yet
|
129 |
+
// TODO: support blocksparse.
|
130 |
TORCH_CHECK(
|
131 |
!is_block_sparse,
|
132 |
"Block sparse attention is not yet supported in Metal implementation");
|
133 |
+
|
134 |
+
// Determine cache dtype based on kv_cache_dtype
|
135 |
+
torch::ScalarType cache_dtype = key_cache.scalar_type();
|
136 |
+
bool use_fp8_scales = (kv_cache_dtype == "fp8" || kv_cache_dtype == "fp8_e4m3");
|
137 |
+
if (use_fp8_scales) {
|
138 |
+
TORCH_CHECK(cache_dtype == torch::kUInt8, "FP8 cache requires UInt8 tensor type");
|
139 |
+
TORCH_CHECK(k_scale.numel() == 1 && v_scale.numel() == 1, "FP8 scales must be scalars");
|
140 |
+
TORCH_CHECK(k_scale.scalar_type() == torch::kFloat32 && v_scale.scalar_type() == torch::kFloat32,
|
141 |
+
"FP8 scales must be float32");
|
142 |
}
|
143 |
|
144 |
// Validate input tensors
|
|
|
174 |
|
175 |
// Get kernel name - v1 kernels have partition_size=0 in their name
|
176 |
std::string kernel_name =
|
177 |
+
getKernelName("paged_attention", query.scalar_type(), cache_dtype, head_size,
|
178 |
block_size, num_threads, num_simd_lanes, partition_size);
|
179 |
|
180 |
@autoreleasepool {
|
|
|
201 |
type:MTLDataTypeBool
|
202 |
atIndex:10];
|
203 |
[constants setConstantValue:&use_alibi type:MTLDataTypeBool atIndex:20];
|
204 |
+
[constants setConstantValue:&use_fp8_scales type:MTLDataTypeBool atIndex:30];
|
205 |
|
206 |
NSString *kernelNameStr =
|
207 |
[NSString stringWithUTF8String:kernel_name.c_str()];
|
|
|
261 |
offset:value_cache.storage_offset() * value_cache.element_size()
|
262 |
atIndex:buffer_idx++];
|
263 |
|
264 |
+
// k_scale and v_scale (for FP8)
|
265 |
+
if (use_fp8_scales) {
|
266 |
+
[enc setBuffer:getMTLBufferStorage(k_scale)
|
267 |
+
offset:k_scale.storage_offset() * k_scale.element_size()
|
268 |
+
atIndex:buffer_idx++];
|
269 |
+
[enc setBuffer:getMTLBufferStorage(v_scale)
|
270 |
+
offset:v_scale.storage_offset() * v_scale.element_size()
|
271 |
+
atIndex:buffer_idx++];
|
272 |
+
} else {
|
273 |
+
buffer_idx += 2; // Skip k_scale and v_scale buffer slots
|
274 |
+
}
|
275 |
+
|
276 |
// num_kv_heads
|
277 |
int32_t num_kv_heads_i32 = static_cast<int32_t>(num_kv_heads);
|
278 |
[enc setBytes:&num_kv_heads_i32
|
|
|
364 |
const int64_t blocksparse_head_sliding_step) {
|
365 |
const bool is_block_sparse = (blocksparse_vert_stride > 1);
|
366 |
|
367 |
+
// TODO: support blocksparse.
|
368 |
// Validate block sparse is not supported yet
|
369 |
TORCH_CHECK(
|
370 |
!is_block_sparse,
|
371 |
"Block sparse attention is not yet supported in Metal implementation");
|
372 |
+
|
373 |
+
// Determine cache dtype based on kv_cache_dtype
|
374 |
+
torch::ScalarType cache_dtype = key_cache.scalar_type();
|
375 |
+
bool use_fp8_scales = (kv_cache_dtype == "fp8" || kv_cache_dtype == "fp8_e4m3");
|
376 |
+
if (use_fp8_scales) {
|
377 |
+
TORCH_CHECK(cache_dtype == torch::kUInt8, "FP8 cache requires UInt8 tensor type");
|
378 |
+
TORCH_CHECK(k_scale.numel() == 1 && v_scale.numel() == 1, "FP8 scales must be scalars");
|
379 |
+
TORCH_CHECK(k_scale.scalar_type() == torch::kFloat32 && v_scale.scalar_type() == torch::kFloat32,
|
380 |
+
"FP8 scales must be float32");
|
381 |
}
|
382 |
|
383 |
// Validate input tensors
|
|
|
412 |
|
413 |
// Get kernel names
|
414 |
std::string kernel_name =
|
415 |
+
getKernelName("paged_attention", query.scalar_type(), cache_dtype, head_size,
|
416 |
block_size, num_threads, num_simd_lanes, partition_size);
|
417 |
// Reduce kernel doesn't have block_size in its name
|
418 |
std::string reduce_kernel_name = "paged_attention_v2_reduce";
|
|
|
474 |
[mainConstants setConstantValue:&use_alibi
|
475 |
type:MTLDataTypeBool
|
476 |
atIndex:20];
|
477 |
+
[mainConstants setConstantValue:&use_fp8_scales
|
478 |
+
type:MTLDataTypeBool
|
479 |
+
atIndex:30];
|
480 |
|
481 |
NSString *kernelNameStr =
|
482 |
[NSString stringWithUTF8String:kernel_name.c_str()];
|
|
|
535 |
offset:value_cache.storage_offset() * value_cache.element_size()
|
536 |
atIndex:buffer_idx++];
|
537 |
|
538 |
+
// k_scale and v_scale (for FP8)
|
539 |
+
if (use_fp8_scales) {
|
540 |
+
[enc setBuffer:getMTLBufferStorage(k_scale)
|
541 |
+
offset:k_scale.storage_offset() * k_scale.element_size()
|
542 |
+
atIndex:buffer_idx++];
|
543 |
+
[enc setBuffer:getMTLBufferStorage(v_scale)
|
544 |
+
offset:v_scale.storage_offset() * v_scale.element_size()
|
545 |
+
atIndex:buffer_idx++];
|
546 |
+
} else {
|
547 |
+
buffer_idx += 2; // Skip k_scale and v_scale buffer slots
|
548 |
+
}
|
549 |
+
|
550 |
// num_kv_heads
|
551 |
int32_t num_kv_heads_i32 = static_cast<int32_t>(num_kv_heads);
|
552 |
[enc setBytes:&num_kv_heads_i32
|
tests/kernels/test_attention.py
CHANGED
@@ -34,7 +34,7 @@ HEAD_SIZES = [32, 64, 80, 96, 112, 120, 128, 192, 256]
|
|
34 |
BLOCK_SIZES = [16, 32]
|
35 |
USE_ALIBI = [False, True]
|
36 |
if current_platform.is_mps():
|
37 |
-
KV_CACHE_DTYPE = ["auto"]
|
38 |
else:
|
39 |
KV_CACHE_DTYPE = ["auto", "fp8"]
|
40 |
SEEDS = [0]
|
|
|
34 |
BLOCK_SIZES = [16, 32]
|
35 |
USE_ALIBI = [False, True]
|
36 |
if current_platform.is_mps():
|
37 |
+
KV_CACHE_DTYPE = ["auto", "fp8"]
|
38 |
else:
|
39 |
KV_CACHE_DTYPE = ["auto", "fp8"]
|
40 |
SEEDS = [0]
|
tests/kernels/test_cache.py
CHANGED
@@ -8,7 +8,7 @@ from paged_attention.platforms import current_platform
|
|
8 |
|
9 |
from .utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck
|
10 |
|
11 |
-
COPYING_DIRECTION = [("
|
12 |
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
13 |
NUM_TOKENS = [42] # Arbitrary values for testing
|
14 |
NUM_LAYERS = [1] # Arbitrary values for testing
|
@@ -28,7 +28,7 @@ else:
|
|
28 |
DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]
|
29 |
|
30 |
if current_platform.is_mps():
|
31 |
-
KV_CACHE_DTYPE = ["auto"]
|
32 |
else:
|
33 |
KV_CACHE_DTYPE = ["auto", "fp8"]
|
34 |
|
@@ -226,10 +226,10 @@ def test_reshape_and_cache(
|
|
226 |
|
227 |
if kv_cache_dtype == "fp8":
|
228 |
torch.testing.assert_close(
|
229 |
-
result_key_cache, cloned_key_cache, atol=0.
|
230 |
)
|
231 |
torch.testing.assert_close(
|
232 |
-
result_value_cache, cloned_value_cache, atol=0.
|
233 |
)
|
234 |
else:
|
235 |
torch.testing.assert_close(key_cache, cloned_key_cache)
|
@@ -258,6 +258,9 @@ def test_reshape_and_cache_flash(
|
|
258 |
device: str,
|
259 |
kv_cache_dtype: str,
|
260 |
) -> None:
|
|
|
|
|
|
|
261 |
current_platform.seed_everything(seed)
|
262 |
torch.set_default_device(device)
|
263 |
|
@@ -346,10 +349,10 @@ def test_reshape_and_cache_flash(
|
|
346 |
|
347 |
if kv_cache_dtype == "fp8":
|
348 |
torch.testing.assert_close(
|
349 |
-
result_key_cache, cloned_key_cache, atol=0.
|
350 |
)
|
351 |
torch.testing.assert_close(
|
352 |
-
result_value_cache, cloned_value_cache, atol=0.
|
353 |
)
|
354 |
else:
|
355 |
torch.testing.assert_close(key_cache, cloned_key_cache)
|
@@ -387,8 +390,8 @@ def test_swap_blocks(
|
|
387 |
|
388 |
current_platform.seed_everything(seed)
|
389 |
|
390 |
-
src_device = device if direction[0] == "
|
391 |
-
dst_device = device if direction[1] == "
|
392 |
|
393 |
src_blocks = random.sample(range(num_blocks), num_mappings)
|
394 |
# For the same device, mapping must not overlap
|
@@ -474,8 +477,6 @@ def test_fp8_e4m3_conversion(
|
|
474 |
seed: int,
|
475 |
device: str,
|
476 |
) -> None:
|
477 |
-
if current_platform.is_mps():
|
478 |
-
pytest.skip()
|
479 |
current_platform.seed_everything(seed)
|
480 |
|
481 |
low = -224.0
|
@@ -490,4 +491,60 @@ def test_fp8_e4m3_conversion(
|
|
490 |
converted_cache = torch.empty_like(cache)
|
491 |
ops.convert_fp8(converted_cache, cache_fp8)
|
492 |
|
493 |
-
torch.testing.assert_close(cache, converted_cache, atol=0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
from .utils import DEFAULT_OPCHECK_TEST_UTILS, opcheck
|
10 |
|
11 |
+
COPYING_DIRECTION = [("gpu", "cpu"), ("gpu", "gpu"), ("cpu", "gpu")]
|
12 |
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
13 |
NUM_TOKENS = [42] # Arbitrary values for testing
|
14 |
NUM_LAYERS = [1] # Arbitrary values for testing
|
|
|
28 |
DEVICES = [f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)]
|
29 |
|
30 |
if current_platform.is_mps():
|
31 |
+
KV_CACHE_DTYPE = ["auto", "fp8"]
|
32 |
else:
|
33 |
KV_CACHE_DTYPE = ["auto", "fp8"]
|
34 |
|
|
|
226 |
|
227 |
if kv_cache_dtype == "fp8":
|
228 |
torch.testing.assert_close(
|
229 |
+
result_key_cache, cloned_key_cache, atol=0.02, rtol=0.2
|
230 |
)
|
231 |
torch.testing.assert_close(
|
232 |
+
result_value_cache, cloned_value_cache, atol=0.02, rtol=0.2
|
233 |
)
|
234 |
else:
|
235 |
torch.testing.assert_close(key_cache, cloned_key_cache)
|
|
|
258 |
device: str,
|
259 |
kv_cache_dtype: str,
|
260 |
) -> None:
|
261 |
+
# Flash variant doesn't support FP8 on MPS devices yet
|
262 |
+
if current_platform.is_mps() and kv_cache_dtype == "fp8":
|
263 |
+
pytest.skip("reshape_and_cache_flash doesn't support FP8 on MPS")
|
264 |
current_platform.seed_everything(seed)
|
265 |
torch.set_default_device(device)
|
266 |
|
|
|
349 |
|
350 |
if kv_cache_dtype == "fp8":
|
351 |
torch.testing.assert_close(
|
352 |
+
result_key_cache, cloned_key_cache, atol=0.02, rtol=0.2
|
353 |
)
|
354 |
torch.testing.assert_close(
|
355 |
+
result_value_cache, cloned_value_cache, atol=0.02, rtol=0.2
|
356 |
)
|
357 |
else:
|
358 |
torch.testing.assert_close(key_cache, cloned_key_cache)
|
|
|
390 |
|
391 |
current_platform.seed_everything(seed)
|
392 |
|
393 |
+
src_device = device if direction[0] == "gpu" else "cpu"
|
394 |
+
dst_device = device if direction[1] == "gpu" else "cpu"
|
395 |
|
396 |
src_blocks = random.sample(range(num_blocks), num_mappings)
|
397 |
# For the same device, mapping must not overlap
|
|
|
477 |
seed: int,
|
478 |
device: str,
|
479 |
) -> None:
|
|
|
|
|
480 |
current_platform.seed_everything(seed)
|
481 |
|
482 |
low = -224.0
|
|
|
491 |
converted_cache = torch.empty_like(cache)
|
492 |
ops.convert_fp8(converted_cache, cache_fp8)
|
493 |
|
494 |
+
torch.testing.assert_close(cache, converted_cache, atol=0.02, rtol=0.2)
|
495 |
+
|
496 |
+
|
497 |
+
@pytest.mark.parametrize("src_dtype", [torch.float, torch.half, torch.bfloat16, torch.uint8])
|
498 |
+
@pytest.mark.parametrize("dst_dtype", [torch.float, torch.half, torch.bfloat16, torch.uint8])
|
499 |
+
@pytest.mark.parametrize("scale", [1.0, 0.5, 2.0, 0.1])
|
500 |
+
@pytest.mark.parametrize("device", DEVICES)
|
501 |
+
@torch.inference_mode()
|
502 |
+
def test_convert_fp8_comprehensive(
|
503 |
+
src_dtype: torch.dtype,
|
504 |
+
dst_dtype: torch.dtype,
|
505 |
+
scale: float,
|
506 |
+
device: str,
|
507 |
+
) -> None:
|
508 |
+
"""Test comprehensive FP8 conversion between all supported types"""
|
509 |
+
if current_platform.is_mps() and device != "mps:0":
|
510 |
+
pytest.skip()
|
511 |
+
if not current_platform.is_mps() and device == "mps:0":
|
512 |
+
pytest.skip()
|
513 |
+
|
514 |
+
current_platform.seed_everything(0)
|
515 |
+
torch.set_default_device(device)
|
516 |
+
|
517 |
+
# Create test tensor with reasonable values for FP8 range
|
518 |
+
shape = (32, 8, 16, 16) # Small tensor for fast testing
|
519 |
+
if src_dtype == torch.uint8:
|
520 |
+
# Create FP8 data by converting from float
|
521 |
+
src_float = torch.randn(shape, dtype=torch.float, device=device) * 0.1
|
522 |
+
src_cache = torch.empty(shape, dtype=torch.uint8, device=device)
|
523 |
+
ops.convert_fp8(src_cache, src_float, 1.0, "fp8")
|
524 |
+
else:
|
525 |
+
# Create source data in range suitable for FP8 conversion
|
526 |
+
src_cache = torch.randn(shape, dtype=src_dtype, device=device) * 0.1
|
527 |
+
|
528 |
+
# Perform conversion
|
529 |
+
dst_cache = torch.empty_like(src_cache, dtype=dst_dtype, device=device)
|
530 |
+
ops.convert_fp8(dst_cache, src_cache, scale, "fp8")
|
531 |
+
|
532 |
+
# Verify the tensor was modified (not all zeros)
|
533 |
+
assert not torch.allclose(dst_cache.float(), torch.zeros_like(dst_cache.float()))
|
534 |
+
|
535 |
+
# For round-trip tests (same type), verify approximate equality
|
536 |
+
if src_dtype == dst_dtype and scale == 1.0:
|
537 |
+
if src_dtype == torch.uint8:
|
538 |
+
# FP8 -> FP8 should be identity with scale=1.0
|
539 |
+
torch.testing.assert_close(src_cache, dst_cache)
|
540 |
+
else:
|
541 |
+
# Non-FP8 -> Non-FP8 should be identity with scale=1.0
|
542 |
+
torch.testing.assert_close(src_cache, dst_cache, atol=1e-6, rtol=1e-5)
|
543 |
+
|
544 |
+
# For FP8 round-trip tests (float -> FP8 -> float), verify reasonable approximation
|
545 |
+
if src_dtype != torch.uint8 and dst_dtype == torch.uint8 and scale == 1.0:
|
546 |
+
# Convert back to verify round-trip accuracy
|
547 |
+
roundtrip = torch.empty_like(src_cache, dtype=src_dtype, device=device)
|
548 |
+
ops.convert_fp8(roundtrip, dst_cache, 1.0, "fp8")
|
549 |
+
# FP8 has limited precision, so use relaxed tolerances
|
550 |
+
torch.testing.assert_close(src_cache, roundtrip, atol=0.02, rtol=0.2)
|