|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Qwen2-VL model."""
|
|
|
|
import math
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.utils.checkpoint
|
|
from torch.nn import CrossEntropyLoss, LayerNorm
|
|
|
|
from transformers.activations import ACT2FN
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.utils import (
|
|
is_flash_attn_2_available,
|
|
logging,
|
|
)
|
|
from .configuration_qwen2vit import Qwen2VLVisionConfig
|
|
|
|
if is_flash_attn_2_available():
|
|
from flash_attn import flash_attn_varlen_func
|
|
|
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
|
else:
|
|
flash_attn_varlen_func = None
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2:]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
|
orig_dtype = tensor.dtype
|
|
tensor = tensor.float()
|
|
cos = freqs.cos()
|
|
sin = freqs.sin()
|
|
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
|
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
|
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
|
output = output.to(orig_dtype)
|
|
return output
|
|
|
|
|
|
class VisionRotaryEmbedding(nn.Module):
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
super().__init__()
|
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
def forward(self, seqlen: int) -> torch.Tensor:
|
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
|
freqs = torch.outer(seq, self.inv_freq)
|
|
return freqs
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 14,
|
|
temporal_patch_size: int = 2,
|
|
in_channels: int = 3,
|
|
embed_dim: int = 1152,
|
|
) -> None:
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
self.temporal_patch_size = temporal_patch_size
|
|
self.in_channels = in_channels
|
|
self.embed_dim = embed_dim
|
|
|
|
kernel_size = [temporal_patch_size, patch_size, patch_size]
|
|
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
target_dtype = self.proj.weight.dtype
|
|
hidden_states = hidden_states.view(
|
|
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
|
|
)
|
|
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
|
|
return hidden_states
|
|
|
|
|
|
class PatchMerger(nn.Module):
|
|
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
|
|
super().__init__()
|
|
self.hidden_size = context_dim * (spatial_merge_size ** 2)
|
|
self.ln_q = LayerNorm(context_dim, eps=1e-6)
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(self.hidden_size, self.hidden_size),
|
|
nn.GELU(),
|
|
nn.Linear(self.hidden_size, dim),
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
|
|
return x
|
|
|
|
|
|
class VisionMlp(nn.Module):
|
|
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
|
|
super().__init__()
|
|
self.fc1 = nn.Linear(dim, hidden_dim)
|
|
self.act = ACT2FN[hidden_act]
|
|
self.fc2 = nn.Linear(hidden_dim, dim)
|
|
|
|
def forward(self, x) -> torch.Tensor:
|
|
return self.fc2(self.act(self.fc1(x)))
|
|
|
|
|
|
class VisionAttention(nn.Module):
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim // num_heads
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
def forward(
|
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
|
) -> torch.Tensor:
|
|
seq_length = hidden_states.shape[0]
|
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
|
attention_mask = torch.full(
|
|
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
|
)
|
|
for i in range(1, len(cu_seqlens)):
|
|
attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = 0
|
|
|
|
q = q.transpose(0, 1)
|
|
k = k.transpose(0, 1)
|
|
v = v.transpose(0, 1)
|
|
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
|
|
attn_weights = attn_weights + attention_mask
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
|
|
attn_output = torch.matmul(attn_weights, v)
|
|
attn_output = attn_output.transpose(0, 1)
|
|
attn_output = attn_output.reshape(seq_length, -1)
|
|
attn_output = self.proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
class VisionFlashAttention2(nn.Module):
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
def forward(
|
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
|
) -> torch.Tensor:
|
|
seq_length = hidden_states.shape[0]
|
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
|
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
|
|
seq_length, -1
|
|
)
|
|
attn_output = self.proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
class VisionSdpaAttention(nn.Module):
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
def forward(
|
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
|
) -> torch.Tensor:
|
|
seq_length = hidden_states.shape[0]
|
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
|
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
|
|
for i in range(1, len(cu_seqlens)):
|
|
attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = True
|
|
q = q.transpose(0, 1)
|
|
k = k.transpose(0, 1)
|
|
v = v.transpose(0, 1)
|
|
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
|
|
attn_output = attn_output.transpose(0, 1)
|
|
attn_output = attn_output.reshape(seq_length, -1)
|
|
attn_output = self.proj(attn_output)
|
|
return attn_output
|
|
|
|
|
|
QWEN2_VL_VISION_ATTENTION_CLASSES = {
|
|
"eager": VisionAttention,
|
|
"flash_attention_2": VisionFlashAttention2,
|
|
"sdpa": VisionSdpaAttention,
|
|
}
|
|
|
|
|
|
class Qwen2VLVisionBlock(nn.Module):
|
|
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
|
super().__init__()
|
|
self.norm1 = LayerNorm(config.embed_dim, eps=1e-6)
|
|
self.norm2 = LayerNorm(config.embed_dim, eps=1e-6)
|
|
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
|
|
|
|
self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation](
|
|
config.embed_dim, num_heads=config.num_heads
|
|
)
|
|
self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act)
|
|
|
|
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
|
|
hidden_states = hidden_states + self.attn(
|
|
self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
|
)
|
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
|
return hidden_states
|
|
|
|
|
|
class Qwen2VisionTower(PreTrainedModel):
|
|
config_class = Qwen2VLVisionConfig
|
|
_no_split_modules = ["Qwen2VLVisionBlock"]
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_supports_flash_attn_2 = True
|
|
_supports_sdpa = True
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
def __init__(self, config) -> None:
|
|
super().__init__(config)
|
|
self.spatial_merge_size = config.spatial_merge_size
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
patch_size=config.patch_size,
|
|
temporal_patch_size=config.temporal_patch_size,
|
|
in_channels=config.in_channels,
|
|
embed_dim=config.embed_dim,
|
|
)
|
|
|
|
head_dim = config.embed_dim // config.num_heads
|
|
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
|
|
|
self.blocks = nn.ModuleList(
|
|
[Qwen2VLVisionBlock(config, "eager") for _ in range(config.depth)]
|
|
)
|
|
self.merger = PatchMerger(
|
|
dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size
|
|
)
|
|
|
|
def get_dtype(self) -> torch.dtype:
|
|
return self.blocks[0].mlp.fc2.weight.dtype
|
|
|
|
def get_device(self) -> torch.device:
|
|
return self.blocks[0].mlp.fc2.weight.device
|
|
|
|
def rot_pos_emb(self, grid_thw):
|
|
pos_ids = []
|
|
for t, h, w in grid_thw:
|
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
|
hpos_ids = hpos_ids.reshape(
|
|
h // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
w // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
)
|
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
|
hpos_ids = hpos_ids.flatten()
|
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
|
wpos_ids = wpos_ids.reshape(
|
|
h // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
w // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
)
|
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
|
wpos_ids = wpos_ids.flatten()
|
|
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
|
pos_ids = torch.cat(pos_ids, dim=0)
|
|
max_grid_size = grid_thw[:, 1:].max()
|
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
|
return rotary_pos_emb
|
|
|
|
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.patch_embed(hidden_states)
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
|
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
|
dim=0, dtype=torch.int32
|
|
)
|
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
|
|
|
for blk in self.blocks:
|
|
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
|
|
|
|
return self.merger(hidden_states)
|
|
|