Feature Extraction
Transformers
Safetensors
English
Chinese
emova
Omni-modal-LLM
Multi-modal-LLM
Emotional-spoken-dialogue
custom_code
Eval Results
KaiChen1998 commited on
Commit
e76d237
·
verified ·
1 Parent(s): 428704f

Upload EMOVAForConditionalGeneration

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/8tssd1/kchenbf/cache/emova-qwen-2-5-7b-hf/",
3
+ "architectures": [
4
+ "EMOVAForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_emova.EMOVAConfig",
8
+ "AutoModel": "modeling_emova.EMOVAForConditionalGeneration",
9
+ "AutoModelForCausalLM": "modeling_emova.EMOVAForConditionalGeneration"
10
+ },
11
+ "default_system_prompt": "You are a helpful assistant.",
12
+ "ignore_index": -100,
13
+ "image_token_index": 155761,
14
+ "mm_projector_config": {
15
+ "mlp_depth": 2,
16
+ "trainable": true,
17
+ "type": "MLPProjector"
18
+ },
19
+ "model_type": "emova",
20
+ "text_config": {
21
+ "architectures": [
22
+ "Qwen2ForCausalLM"
23
+ ],
24
+ "bos_token_id": 151643,
25
+ "eos_token_id": 151645,
26
+ "hidden_size": 3584,
27
+ "intermediate_size": 18944,
28
+ "max_position_embeddings": 32768,
29
+ "max_window_layers": 28,
30
+ "model_type": "qwen2",
31
+ "num_attention_heads": 28,
32
+ "num_hidden_layers": 28,
33
+ "num_key_value_heads": 4,
34
+ "rope_theta": 1000000.0,
35
+ "sliding_window": null,
36
+ "torch_dtype": "float32",
37
+ "use_sliding_window": false,
38
+ "vocab_size": 155776
39
+ },
40
+ "tie_word_embeddings": false,
41
+ "torch_dtype": "bfloat16",
42
+ "transformers_version": "4.44.2",
43
+ "vision_config": {
44
+ "max_pixels": 3211264,
45
+ "model_type": "qwen2_vl",
46
+ "pretrained_model_name_or_path": "Emova-ollm/qwen2vit600m",
47
+ "trainable": true,
48
+ "type": "Qwen2VisionTower",
49
+ "unfreeze_mm_vision_tower": true
50
+ }
51
+ }
configuration_emova.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """EMOVA model configuration"""
15
+ from transformers.configuration_utils import PretrainedConfig
16
+ from transformers.utils import logging
17
+ from transformers.models.auto import CONFIG_MAPPING
18
+
19
+ from .configuration_qwen2vit import Qwen2VLVisionConfig
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+
24
+ class EMOVAConfig(PretrainedConfig):
25
+ r"""
26
+ This is the configuration class to store the configuration of a [`EMOVAForConditionalGeneration`]. It is used to instantiate an
27
+ EMOVA model according to the specified arguments, defining the model architecture.
28
+
29
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
30
+ documentation from [`PretrainedConfig`] for more information.
31
+
32
+ Args:
33
+ vision_config (`Union[AutoConfig, dict]`, *optional*, defaults to `CLIPVisionConfig`):
34
+ The config object or dictionary of the vision backbone.
35
+ text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `LlamaConfig`):
36
+ The config object or dictionary of the text backbone.
37
+ ignore_index (`int`, *optional*, defaults to -100):
38
+ The ignore index for the loss function.
39
+ image_token_index (`int`, *optional*, defaults to 32000):
40
+ The image token index to encode the image prompt.
41
+ projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
42
+ The activation function used by the multimodal projector.
43
+ vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
44
+ The feature selection strategy used to select the vision feature from the vision backbone.
45
+ Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
46
+ If `"full"`, the full vision features are used.
47
+ vision_feature_layer (`int`, *optional*, defaults to -2):
48
+ The index of the layer to select the vision feature.
49
+ image_grid_pinpoints (`List`, *optional*, defaults to `[[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]`):
50
+ A list of possible resolutions to use for processing high resolution images. Each item in the list should be a tuple or list
51
+ of the form `(height, width)`.
52
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
53
+ Whether the model's input and output word embeddings should be tied.
54
+
55
+ Example:
56
+
57
+ ```python
58
+ >>> from transformers import EMOVAForConditionalGeneration, EMOVAConfig, CLIPVisionConfig, LlamaConfig
59
+
60
+ >>> # Initializing a CLIP-vision config
61
+ >>> vision_config = CLIPVisionConfig()
62
+
63
+ >>> # Initializing a Llama config
64
+ >>> text_config = LlamaConfig()
65
+
66
+ >>> # Initializing a EMOVA style configuration
67
+ >>> configuration = EMOVAConfig(vision_config, text_config)
68
+
69
+ >>> # Initializing a model from the style configuration
70
+ >>> model = EMOVAForConditionalGeneration(configuration)
71
+
72
+ >>> # Accessing the model configuration
73
+ >>> configuration = model.config
74
+ ```"""
75
+
76
+ model_type = "emova"
77
+ is_composition = False
78
+
79
+ def __init__(
80
+ self,
81
+ vision_config=None,
82
+ mm_projector_config=None,
83
+ text_config=None,
84
+ ignore_index=-100,
85
+ image_token_index=32000,
86
+ vision_feature_select_strategy="default",
87
+ vision_feature_layer=-2,
88
+ is_native_resolution=True,
89
+ image_grid_pinpoints=None,
90
+ use_image_newline_parameter=False,
91
+ tie_word_embeddings=False,
92
+ **kwargs,
93
+ ):
94
+ self.ignore_index = ignore_index
95
+ self.image_token_index = image_token_index
96
+
97
+ if vision_feature_select_strategy not in ["default", "full"]:
98
+ raise ValueError(
99
+ "vision_feature_select_strategy should be one of 'default', 'full'."
100
+ f"Got: {vision_feature_select_strategy}"
101
+ )
102
+
103
+ # self.vision_feature_select_strategy = vision_feature_select_strategy
104
+ # self.vision_feature_layer = vision_feature_layer
105
+ # image_grid_pinpoints = (
106
+ # image_grid_pinpoints
107
+ # if image_grid_pinpoints is not None
108
+ # else [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
109
+ # )
110
+ # self.is_native_resolution = is_native_resolution
111
+ # self.image_grid_pinpoints = image_grid_pinpoints if not self.is_native_resolution else None
112
+ # self.use_image_newline_parameter = use_image_newline_parameter
113
+
114
+ if isinstance(vision_config, dict):
115
+ vision_config = Qwen2VLVisionConfig(**vision_config)
116
+ elif vision_config is None:
117
+ vision_config = Qwen2VLVisionConfig(
118
+ depth=32,
119
+ embed_dim=1280,
120
+ hidden_act="quick_gelu",
121
+ hidden_size=3584,
122
+ in_channels=3,
123
+ in_chans=3,
124
+ mlp_ratio=4,
125
+ model_type="qwen2_vl",
126
+ num_heads=16,
127
+ patch_size=14,
128
+ spatial_merge_size=2,
129
+ spatial_patch_size=14,
130
+ temporal_patch_size=2,
131
+ initializer_range=0.02,
132
+ )
133
+
134
+ # if isinstance(vision_config, dict):
135
+ # vision_config["model_type"] = (
136
+ # vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
137
+ # )
138
+ # vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
139
+ # elif vision_config is None:
140
+ # vision_config = CONFIG_MAPPING["clip_vision_model"](
141
+ # intermediate_size=4096,
142
+ # hidden_size=1024,
143
+ # patch_size=14,
144
+ # image_size=336,
145
+ # num_hidden_layers=24,
146
+ # num_attention_heads=16,
147
+ # vocab_size=32000,
148
+ # projection_dim=768,
149
+ # )
150
+
151
+ self.vision_config = vision_config
152
+ self.mm_projector_config = mm_projector_config
153
+ if isinstance(text_config, dict):
154
+ text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
155
+ text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
156
+ elif text_config is None:
157
+ text_config = CONFIG_MAPPING["llama"]()
158
+
159
+ self.text_config = text_config
160
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
configuration_qwen2vit.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Qwen2VL model configuration"""
16
+
17
+ import os
18
+ from typing import Union
19
+
20
+ from transformers.configuration_utils import PretrainedConfig
21
+ from transformers.utils import logging
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class Qwen2VLVisionConfig(PretrainedConfig):
27
+ model_type = "qwen2_vl"
28
+
29
+ def __init__(
30
+ self,
31
+ depth=32,
32
+ embed_dim=1280,
33
+ hidden_size=3584,
34
+ hidden_act="quick_gelu",
35
+ mlp_ratio=4,
36
+ num_heads=16,
37
+ in_channels=3,
38
+ patch_size=14,
39
+ spatial_merge_size=2,
40
+ temporal_patch_size=2,
41
+ **kwargs,
42
+ ):
43
+ super().__init__(**kwargs)
44
+
45
+ self.depth = depth
46
+ self.embed_dim = embed_dim
47
+ self.hidden_size = hidden_size
48
+ self.hidden_act = hidden_act
49
+ self.mlp_ratio = mlp_ratio
50
+ self.num_heads = num_heads
51
+ self.in_channels = in_channels
52
+ self.patch_size = patch_size
53
+ self.spatial_merge_size = spatial_merge_size
54
+ self.temporal_patch_size = temporal_patch_size
55
+
56
+ @classmethod
57
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
58
+ cls._set_token_in_kwargs(kwargs)
59
+
60
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
61
+
62
+ # if config_dict.get("model_type") == "qwen2_vl":
63
+ # config_dict = config_dict["vision_config"]
64
+
65
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
66
+ logger.warning(
67
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
68
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
69
+ )
70
+
71
+ return cls.from_dict(config_dict, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.44.2"
6
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc3a4159d2383c434613cd0273005331a59a33a3188ac70b3660e202285ec8f7
3
+ size 4908875200
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e657ab12a61acc374acdbd087ad5b4640f64387bf868184f9124ffbcb77e6a7c
3
+ size 4932752808
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3f05e160738389c89a2c48790d2f1befb39118830957b67930afc8cc4c7dcef
3
+ size 4991497848
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:849a82141a4b722c193ca108432d873a7231a9e029081d479e86038b931ac5be
3
+ size 1854322976
model.safetensors.index.json ADDED
@@ -0,0 +1,741 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16687361024
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "language_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "language_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "language_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "language_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "language_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "language_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "language_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "language_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "language_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "language_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "language_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "language_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "language_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "language_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "language_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "language_model.model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
93
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
94
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
97
+ "language_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "language_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "language_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "language_model.model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
107
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
108
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
109
+ "language_model.model.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
110
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
111
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
112
+ "language_model.model.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
113
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
114
+ "language_model.model.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
115
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
116
+ "language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
119
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
120
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "language_model.model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
122
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
123
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
124
+ "language_model.model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
125
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
126
+ "language_model.model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
127
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
128
+ "language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "language_model.model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "language_model.model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "language_model.model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "language_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "language_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "language_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "language_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "language_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "language_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "language_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "language_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "language_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "language_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "language_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "language_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "language_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "language_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "language_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "language_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "language_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "language_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "language_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "language_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "language_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "language_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "language_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "language_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "language_model.model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
237
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
238
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
240
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
241
+ "language_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "language_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "language_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "language_model.model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
251
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
252
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "language_model.model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
254
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
255
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
256
+ "language_model.model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
257
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
258
+ "language_model.model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
259
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
260
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "language_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "language_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "language_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "language_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "language_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "language_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "language_model.model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
285
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
286
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
287
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
288
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "language_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "language_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "language_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
297
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
298
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
299
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
300
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
301
+ "language_model.model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
302
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
303
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
304
+ "language_model.model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
305
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
306
+ "language_model.model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
307
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
308
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
+ "language_model.model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
314
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
315
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
+ "language_model.model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
317
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
318
+ "language_model.model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
319
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
320
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "language_model.model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "language_model.model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "language_model.model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "language_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "language_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "language_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "language_model.model.norm.weight": "model-00004-of-00004.safetensors",
345
+ "multi_modal_projector.0.bias": "model-00001-of-00004.safetensors",
346
+ "multi_modal_projector.0.weight": "model-00001-of-00004.safetensors",
347
+ "multi_modal_projector.2.bias": "model-00001-of-00004.safetensors",
348
+ "multi_modal_projector.2.weight": "model-00001-of-00004.safetensors",
349
+ "vision_tower.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
350
+ "vision_tower.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
351
+ "vision_tower.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
352
+ "vision_tower.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
353
+ "vision_tower.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
354
+ "vision_tower.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
355
+ "vision_tower.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
356
+ "vision_tower.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
357
+ "vision_tower.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
358
+ "vision_tower.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
359
+ "vision_tower.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
360
+ "vision_tower.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
361
+ "vision_tower.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
362
+ "vision_tower.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
363
+ "vision_tower.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
364
+ "vision_tower.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
365
+ "vision_tower.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
366
+ "vision_tower.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
367
+ "vision_tower.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
368
+ "vision_tower.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
369
+ "vision_tower.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
370
+ "vision_tower.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
371
+ "vision_tower.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
372
+ "vision_tower.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
373
+ "vision_tower.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
374
+ "vision_tower.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
375
+ "vision_tower.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
376
+ "vision_tower.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
377
+ "vision_tower.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
378
+ "vision_tower.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
379
+ "vision_tower.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
380
+ "vision_tower.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
381
+ "vision_tower.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
382
+ "vision_tower.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
383
+ "vision_tower.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
384
+ "vision_tower.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
385
+ "vision_tower.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
386
+ "vision_tower.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
387
+ "vision_tower.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
388
+ "vision_tower.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
389
+ "vision_tower.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
390
+ "vision_tower.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
391
+ "vision_tower.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
392
+ "vision_tower.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
393
+ "vision_tower.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
394
+ "vision_tower.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
395
+ "vision_tower.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
396
+ "vision_tower.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
397
+ "vision_tower.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
398
+ "vision_tower.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
399
+ "vision_tower.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
400
+ "vision_tower.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
401
+ "vision_tower.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
402
+ "vision_tower.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
403
+ "vision_tower.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
404
+ "vision_tower.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
405
+ "vision_tower.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
406
+ "vision_tower.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
407
+ "vision_tower.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
408
+ "vision_tower.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
409
+ "vision_tower.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
410
+ "vision_tower.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
411
+ "vision_tower.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
412
+ "vision_tower.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
413
+ "vision_tower.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
414
+ "vision_tower.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
415
+ "vision_tower.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
416
+ "vision_tower.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
417
+ "vision_tower.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
418
+ "vision_tower.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
419
+ "vision_tower.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
420
+ "vision_tower.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
421
+ "vision_tower.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
422
+ "vision_tower.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
423
+ "vision_tower.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
424
+ "vision_tower.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
425
+ "vision_tower.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
426
+ "vision_tower.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
427
+ "vision_tower.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
428
+ "vision_tower.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
429
+ "vision_tower.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
430
+ "vision_tower.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
431
+ "vision_tower.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
432
+ "vision_tower.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
433
+ "vision_tower.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
434
+ "vision_tower.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
435
+ "vision_tower.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
436
+ "vision_tower.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
437
+ "vision_tower.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
438
+ "vision_tower.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
439
+ "vision_tower.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
440
+ "vision_tower.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
441
+ "vision_tower.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
442
+ "vision_tower.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
443
+ "vision_tower.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
444
+ "vision_tower.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
445
+ "vision_tower.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
446
+ "vision_tower.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
447
+ "vision_tower.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
448
+ "vision_tower.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
449
+ "vision_tower.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
450
+ "vision_tower.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
451
+ "vision_tower.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
452
+ "vision_tower.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
453
+ "vision_tower.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
454
+ "vision_tower.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
455
+ "vision_tower.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
456
+ "vision_tower.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
457
+ "vision_tower.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
458
+ "vision_tower.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
459
+ "vision_tower.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
460
+ "vision_tower.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
461
+ "vision_tower.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
462
+ "vision_tower.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
463
+ "vision_tower.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
464
+ "vision_tower.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
465
+ "vision_tower.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
466
+ "vision_tower.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
467
+ "vision_tower.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
468
+ "vision_tower.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
469
+ "vision_tower.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
470
+ "vision_tower.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
471
+ "vision_tower.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
472
+ "vision_tower.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
473
+ "vision_tower.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
474
+ "vision_tower.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
475
+ "vision_tower.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
476
+ "vision_tower.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
477
+ "vision_tower.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
478
+ "vision_tower.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
479
+ "vision_tower.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
480
+ "vision_tower.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
481
+ "vision_tower.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
482
+ "vision_tower.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
483
+ "vision_tower.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
484
+ "vision_tower.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
485
+ "vision_tower.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
486
+ "vision_tower.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
487
+ "vision_tower.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
488
+ "vision_tower.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
489
+ "vision_tower.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
490
+ "vision_tower.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
491
+ "vision_tower.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
492
+ "vision_tower.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
493
+ "vision_tower.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
494
+ "vision_tower.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
495
+ "vision_tower.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
496
+ "vision_tower.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
497
+ "vision_tower.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
498
+ "vision_tower.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
499
+ "vision_tower.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
500
+ "vision_tower.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
501
+ "vision_tower.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
502
+ "vision_tower.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
503
+ "vision_tower.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
504
+ "vision_tower.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
505
+ "vision_tower.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
506
+ "vision_tower.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
507
+ "vision_tower.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
508
+ "vision_tower.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
509
+ "vision_tower.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
510
+ "vision_tower.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
511
+ "vision_tower.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
512
+ "vision_tower.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
513
+ "vision_tower.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
514
+ "vision_tower.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
515
+ "vision_tower.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
516
+ "vision_tower.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
517
+ "vision_tower.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
518
+ "vision_tower.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
519
+ "vision_tower.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
520
+ "vision_tower.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
521
+ "vision_tower.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
522
+ "vision_tower.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
523
+ "vision_tower.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
524
+ "vision_tower.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
525
+ "vision_tower.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
526
+ "vision_tower.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
527
+ "vision_tower.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
528
+ "vision_tower.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
529
+ "vision_tower.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
530
+ "vision_tower.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
531
+ "vision_tower.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
532
+ "vision_tower.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
533
+ "vision_tower.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
534
+ "vision_tower.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
535
+ "vision_tower.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
536
+ "vision_tower.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
537
+ "vision_tower.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
538
+ "vision_tower.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
539
+ "vision_tower.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
540
+ "vision_tower.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
541
+ "vision_tower.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
542
+ "vision_tower.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
543
+ "vision_tower.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
544
+ "vision_tower.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
545
+ "vision_tower.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
546
+ "vision_tower.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
547
+ "vision_tower.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
548
+ "vision_tower.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
549
+ "vision_tower.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
550
+ "vision_tower.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
551
+ "vision_tower.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
552
+ "vision_tower.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
553
+ "vision_tower.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
554
+ "vision_tower.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
555
+ "vision_tower.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
556
+ "vision_tower.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
557
+ "vision_tower.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
558
+ "vision_tower.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
559
+ "vision_tower.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
560
+ "vision_tower.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
561
+ "vision_tower.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
562
+ "vision_tower.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
563
+ "vision_tower.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
564
+ "vision_tower.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
565
+ "vision_tower.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
566
+ "vision_tower.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
567
+ "vision_tower.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
568
+ "vision_tower.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
569
+ "vision_tower.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
570
+ "vision_tower.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
571
+ "vision_tower.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
572
+ "vision_tower.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
573
+ "vision_tower.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
574
+ "vision_tower.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
575
+ "vision_tower.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
576
+ "vision_tower.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
577
+ "vision_tower.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
578
+ "vision_tower.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
579
+ "vision_tower.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
580
+ "vision_tower.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
581
+ "vision_tower.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
582
+ "vision_tower.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
583
+ "vision_tower.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
584
+ "vision_tower.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
585
+ "vision_tower.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
586
+ "vision_tower.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
587
+ "vision_tower.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
588
+ "vision_tower.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
589
+ "vision_tower.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
590
+ "vision_tower.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
591
+ "vision_tower.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
592
+ "vision_tower.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
593
+ "vision_tower.blocks.27.mlp.fc1.bias": "model-00001-of-00004.safetensors",
594
+ "vision_tower.blocks.27.mlp.fc1.weight": "model-00001-of-00004.safetensors",
595
+ "vision_tower.blocks.27.mlp.fc2.bias": "model-00001-of-00004.safetensors",
596
+ "vision_tower.blocks.27.mlp.fc2.weight": "model-00001-of-00004.safetensors",
597
+ "vision_tower.blocks.27.norm1.bias": "model-00001-of-00004.safetensors",
598
+ "vision_tower.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
599
+ "vision_tower.blocks.27.norm2.bias": "model-00001-of-00004.safetensors",
600
+ "vision_tower.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
601
+ "vision_tower.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
602
+ "vision_tower.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
603
+ "vision_tower.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
604
+ "vision_tower.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
605
+ "vision_tower.blocks.28.mlp.fc1.bias": "model-00001-of-00004.safetensors",
606
+ "vision_tower.blocks.28.mlp.fc1.weight": "model-00001-of-00004.safetensors",
607
+ "vision_tower.blocks.28.mlp.fc2.bias": "model-00001-of-00004.safetensors",
608
+ "vision_tower.blocks.28.mlp.fc2.weight": "model-00001-of-00004.safetensors",
609
+ "vision_tower.blocks.28.norm1.bias": "model-00001-of-00004.safetensors",
610
+ "vision_tower.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
611
+ "vision_tower.blocks.28.norm2.bias": "model-00001-of-00004.safetensors",
612
+ "vision_tower.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
613
+ "vision_tower.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
614
+ "vision_tower.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
615
+ "vision_tower.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
616
+ "vision_tower.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
617
+ "vision_tower.blocks.29.mlp.fc1.bias": "model-00001-of-00004.safetensors",
618
+ "vision_tower.blocks.29.mlp.fc1.weight": "model-00001-of-00004.safetensors",
619
+ "vision_tower.blocks.29.mlp.fc2.bias": "model-00001-of-00004.safetensors",
620
+ "vision_tower.blocks.29.mlp.fc2.weight": "model-00001-of-00004.safetensors",
621
+ "vision_tower.blocks.29.norm1.bias": "model-00001-of-00004.safetensors",
622
+ "vision_tower.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
623
+ "vision_tower.blocks.29.norm2.bias": "model-00001-of-00004.safetensors",
624
+ "vision_tower.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
625
+ "vision_tower.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
626
+ "vision_tower.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
627
+ "vision_tower.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
628
+ "vision_tower.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
629
+ "vision_tower.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
630
+ "vision_tower.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
631
+ "vision_tower.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
632
+ "vision_tower.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
633
+ "vision_tower.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
634
+ "vision_tower.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
635
+ "vision_tower.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
636
+ "vision_tower.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
637
+ "vision_tower.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
638
+ "vision_tower.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
639
+ "vision_tower.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
640
+ "vision_tower.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
641
+ "vision_tower.blocks.30.mlp.fc1.bias": "model-00001-of-00004.safetensors",
642
+ "vision_tower.blocks.30.mlp.fc1.weight": "model-00001-of-00004.safetensors",
643
+ "vision_tower.blocks.30.mlp.fc2.bias": "model-00001-of-00004.safetensors",
644
+ "vision_tower.blocks.30.mlp.fc2.weight": "model-00001-of-00004.safetensors",
645
+ "vision_tower.blocks.30.norm1.bias": "model-00001-of-00004.safetensors",
646
+ "vision_tower.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
647
+ "vision_tower.blocks.30.norm2.bias": "model-00001-of-00004.safetensors",
648
+ "vision_tower.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
649
+ "vision_tower.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
650
+ "vision_tower.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
651
+ "vision_tower.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
652
+ "vision_tower.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
653
+ "vision_tower.blocks.31.mlp.fc1.bias": "model-00001-of-00004.safetensors",
654
+ "vision_tower.blocks.31.mlp.fc1.weight": "model-00001-of-00004.safetensors",
655
+ "vision_tower.blocks.31.mlp.fc2.bias": "model-00001-of-00004.safetensors",
656
+ "vision_tower.blocks.31.mlp.fc2.weight": "model-00001-of-00004.safetensors",
657
+ "vision_tower.blocks.31.norm1.bias": "model-00001-of-00004.safetensors",
658
+ "vision_tower.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
659
+ "vision_tower.blocks.31.norm2.bias": "model-00001-of-00004.safetensors",
660
+ "vision_tower.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
661
+ "vision_tower.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
662
+ "vision_tower.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
663
+ "vision_tower.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
664
+ "vision_tower.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
665
+ "vision_tower.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
666
+ "vision_tower.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
667
+ "vision_tower.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
668
+ "vision_tower.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
669
+ "vision_tower.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
670
+ "vision_tower.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
671
+ "vision_tower.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
672
+ "vision_tower.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
673
+ "vision_tower.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
674
+ "vision_tower.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
675
+ "vision_tower.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
676
+ "vision_tower.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
677
+ "vision_tower.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
678
+ "vision_tower.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
679
+ "vision_tower.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
680
+ "vision_tower.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
681
+ "vision_tower.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
682
+ "vision_tower.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
683
+ "vision_tower.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
684
+ "vision_tower.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
685
+ "vision_tower.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
686
+ "vision_tower.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
687
+ "vision_tower.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
688
+ "vision_tower.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
689
+ "vision_tower.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
690
+ "vision_tower.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
691
+ "vision_tower.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
692
+ "vision_tower.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
693
+ "vision_tower.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
694
+ "vision_tower.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
695
+ "vision_tower.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
696
+ "vision_tower.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
697
+ "vision_tower.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
698
+ "vision_tower.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
699
+ "vision_tower.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
700
+ "vision_tower.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
701
+ "vision_tower.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
702
+ "vision_tower.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
703
+ "vision_tower.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
704
+ "vision_tower.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
705
+ "vision_tower.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
706
+ "vision_tower.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
707
+ "vision_tower.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
708
+ "vision_tower.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
709
+ "vision_tower.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
710
+ "vision_tower.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
711
+ "vision_tower.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
712
+ "vision_tower.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
713
+ "vision_tower.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
714
+ "vision_tower.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
715
+ "vision_tower.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
716
+ "vision_tower.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
717
+ "vision_tower.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
718
+ "vision_tower.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
719
+ "vision_tower.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
720
+ "vision_tower.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
721
+ "vision_tower.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
722
+ "vision_tower.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
723
+ "vision_tower.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
724
+ "vision_tower.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
725
+ "vision_tower.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
726
+ "vision_tower.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
727
+ "vision_tower.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
728
+ "vision_tower.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
729
+ "vision_tower.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
730
+ "vision_tower.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
731
+ "vision_tower.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
732
+ "vision_tower.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
733
+ "vision_tower.merger.ln_q.bias": "model-00001-of-00004.safetensors",
734
+ "vision_tower.merger.ln_q.weight": "model-00001-of-00004.safetensors",
735
+ "vision_tower.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
736
+ "vision_tower.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
737
+ "vision_tower.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
738
+ "vision_tower.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
739
+ "vision_tower.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
740
+ }
741
+ }
modeling_emova.py ADDED
@@ -0,0 +1,816 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch EMOVA model."""
16
+
17
+ import math
18
+ from dataclasses import dataclass
19
+ from functools import partial
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import numpy as np
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+
27
+ from transformers import PreTrainedModel
28
+ from transformers.activations import ACT2FN
29
+ from transformers.cache_utils import Cache
30
+ from transformers.image_processing_utils import select_best_resolution
31
+ from transformers.modeling_outputs import ModelOutput
32
+ from transformers.utils import (
33
+ add_start_docstrings,
34
+ add_start_docstrings_to_model_forward,
35
+ logging,
36
+ replace_return_docstrings,
37
+ )
38
+ from transformers.models.auto import AutoModel, AutoModelForCausalLM
39
+
40
+ from .configuration_emova import EMOVAConfig
41
+ from .modeling_qwen2vit import Qwen2VisionTower
42
+
43
+ from timm.models.regnet import RegStage
44
+
45
+ try:
46
+ from timm.layers import LayerNorm2d
47
+ except:
48
+ from timm.models.layers import LayerNorm2d
49
+ from einops import rearrange
50
+
51
+ logger = logging.get_logger(__name__)
52
+
53
+ _CONFIG_FOR_DOC = "EMOVAConfig"
54
+
55
+
56
+ @dataclass
57
+ class EMOVACausalLMOutputWithPast(ModelOutput):
58
+ """
59
+ Base class for EMOVA causal language model (or autoregressive) outputs.
60
+
61
+ Args:
62
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
63
+ Language modeling loss (for next-token prediction).
64
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
65
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
66
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
67
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
68
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
69
+
70
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
71
+ `past_key_values` input) to speed up sequential decoding.
72
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
73
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
74
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
75
+
76
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
77
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
78
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
79
+ sequence_length)`.
80
+
81
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
82
+ heads.
83
+ image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
84
+ Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
85
+ sequence_length, hidden_size)`.
86
+
87
+ image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
88
+ """
89
+
90
+ loss: Optional[torch.FloatTensor] = None
91
+ logits: torch.FloatTensor = None
92
+ past_key_values: Optional[List[torch.FloatTensor]] = None
93
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
94
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
95
+ image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
96
+
97
+
98
+ class EMOVAMultiModalProjector(nn.Sequential):
99
+ # CAbstractor
100
+ def __init__(self, config):
101
+ super(EMOVAMultiModalProjector, self).__init__()
102
+ hidden_size = config.text_config.hidden_size
103
+ mm_hidden_size = config.vision_config.hidden_size
104
+ mlp_depth = config.mm_projector_config['mlp_depth']
105
+
106
+ modules = [nn.Linear(mm_hidden_size, hidden_size)]
107
+ for _ in range(1, mlp_depth):
108
+ modules.append(nn.GELU())
109
+ modules.append(nn.Linear(hidden_size, hidden_size))
110
+ super(EMOVAMultiModalProjector, self).__init__(*modules)
111
+
112
+
113
+ EMOVA_START_DOCSTRING = r"""
114
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
115
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
116
+ etc.)
117
+
118
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
119
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
120
+ and behavior.
121
+
122
+ Parameters:
123
+ config ([`EMOVAConfig`] or [`EMOVAVisionConfig`]):
124
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
125
+ load the weights associated with the model, only the configuration. Check out the
126
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
127
+ """
128
+
129
+
130
+ @add_start_docstrings(
131
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
132
+ EMOVA_START_DOCSTRING,
133
+ )
134
+ class EMOVAPreTrainedModel(PreTrainedModel):
135
+ config_class = EMOVAConfig
136
+ base_model_prefix = "model"
137
+ supports_gradient_checkpointing = True
138
+ _no_split_modules = ["EMOVAVisionAttention"]
139
+ _skip_keys_device_placement = "past_key_values"
140
+ _supports_flash_attn_2 = True
141
+ _supports_cache_class = True
142
+
143
+ def _init_weights(self, module):
144
+ std = (
145
+ self.config.initializer_range
146
+ if hasattr(self.config, "initializer_range")
147
+ else self.config.text_config.initializer_range
148
+ )
149
+
150
+ if hasattr(module, "class_embedding"):
151
+ module.class_embedding.data.normal_(mean=0.0, std=std)
152
+
153
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
154
+ module.weight.data.normal_(mean=0.0, std=std)
155
+ if module.bias is not None:
156
+ module.bias.data.zero_()
157
+ elif isinstance(module, nn.Embedding):
158
+ module.weight.data.normal_(mean=0.0, std=std)
159
+ if module.padding_idx is not None:
160
+ module.weight.data[module.padding_idx].zero_()
161
+
162
+ @property
163
+ def _supports_sdpa(self):
164
+ """
165
+ Retrieve language_model's attribute to check whether the model supports
166
+ SDPA or not.
167
+ """
168
+ return self.language_model._supports_sdpa
169
+
170
+
171
+ EMOVA_INPUTS_DOCSTRING = r"""
172
+ Args:
173
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
174
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
175
+ it.
176
+
177
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
178
+ [`PreTrainedTokenizer.__call__`] for details.
179
+
180
+ [What are input IDs?](../glossary#input-ids)
181
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
182
+ The tensors corresponding to the input images. Pixel values can be obtained using
183
+ [`AutoImageProcessor`]. See [`EMOVAImageProcessor.__call__`] for details. [`EMOVAProcessor`] uses
184
+ [`EMOVAImageProcessor`] for processing images.
185
+ image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
186
+ The sizes of the images in the batch, being (height, width) for each image.
187
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
188
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
189
+
190
+ - 1 for tokens that are **not masked**,
191
+ - 0 for tokens that are **masked**.
192
+
193
+ [What are attention masks?](../glossary#attention-mask)
194
+
195
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
196
+ [`PreTrainedTokenizer.__call__`] for details.
197
+
198
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
199
+ `past_key_values`).
200
+
201
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
202
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
203
+ information on the default strategy.
204
+
205
+ - 1 indicates the head is **not masked**,
206
+ - 0 indicates the head is **masked**.
207
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
208
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
209
+ config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
210
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
211
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
212
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
213
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
214
+
215
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
216
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
217
+
218
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
219
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
220
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
221
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
222
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
223
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
224
+ model's internal embedding lookup matrix.
225
+ vision_feature_layer (`int`, *optional*, defaults to -2):
226
+ The index of the layer to select the vision feature.
227
+ vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
228
+ The feature selection strategy used to select the vision feature from the vision backbone.
229
+ Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
230
+ If `"full"`, the full vision features are used.
231
+ use_cache (`bool`, *optional*):
232
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
233
+ `past_key_values`).
234
+ output_attentions (`bool`, *optional*):
235
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
236
+ tensors for more detail.
237
+ output_hidden_states (`bool`, *optional*):
238
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
239
+ more detail.
240
+ return_dict (`bool`, *optional*):
241
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
242
+ """
243
+
244
+
245
+ @add_start_docstrings(
246
+ """The EMOVA model which consists of a vision backbone and a language model.""",
247
+ EMOVA_START_DOCSTRING,
248
+ )
249
+ class EMOVAForConditionalGeneration(EMOVAPreTrainedModel):
250
+ def __init__(self, config: EMOVAConfig, **kwargs):
251
+ super().__init__(config)
252
+ self.vision_tower = Qwen2VisionTower(config.vision_config)
253
+ self.multi_modal_projector = EMOVAMultiModalProjector(config)
254
+
255
+ self.vocab_size = config.text_config.vocab_size
256
+ self.language_model = AutoModelForCausalLM.from_config(
257
+ config.text_config, attn_implementation=config._attn_implementation
258
+ )
259
+ self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
260
+ self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
261
+ self.post_init()
262
+
263
+ @property
264
+ def padding_side(self):
265
+ return self._padding_side
266
+
267
+ @padding_side.setter
268
+ def padding_side(self, padding_side: str):
269
+ if padding_side not in ["left", "right"]:
270
+ raise ValueError(f"{padding_side} is not `left` or `right`.")
271
+ self._padding_side = padding_side
272
+
273
+ def get_input_embeddings(self):
274
+ return self.language_model.get_input_embeddings()
275
+
276
+ def set_input_embeddings(self, value):
277
+ self.language_model.set_input_embeddings(value)
278
+
279
+ def get_output_embeddings(self):
280
+ return self.language_model.get_output_embeddings()
281
+
282
+ def set_output_embeddings(self, new_embeddings):
283
+ self.language_model.set_output_embeddings(new_embeddings)
284
+
285
+ def set_decoder(self, decoder):
286
+ self.language_model.set_decoder(decoder)
287
+
288
+ def get_decoder(self):
289
+ return self.language_model.get_decoder()
290
+
291
+ def tie_weights(self):
292
+ return self.language_model.tie_weights()
293
+
294
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
295
+ model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
296
+ # update vocab size
297
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
298
+ self.vocab_size = model_embeds.num_embeddings
299
+ return model_embeds
300
+
301
+ def _merge_input_ids_with_image_features(
302
+ self,
303
+ image_features,
304
+ feature_lens,
305
+ inputs_embeds,
306
+ input_ids,
307
+ attention_mask,
308
+ position_ids=None,
309
+ labels=None,
310
+ image_token_index=None,
311
+ ignore_index=-100,
312
+ ):
313
+ """
314
+ Merge input_ids with with image features into final embeddings
315
+
316
+ Args:
317
+ image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
318
+ All vision vectors of all images in the batch
319
+ feature_lens (`torch.LongTensor` of shape `(num_images)`):
320
+ The length of visual embeddings of each image as stacked in `image_features`
321
+ inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
322
+ Token embeddings before merging with visual embeddings
323
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
324
+ Input_ids of tokens, possibly filled with image token
325
+ attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
326
+ Mask to avoid performing attention on padding token indices.
327
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
328
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
329
+ config.n_positions - 1]`.
330
+ labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
331
+ :abels need to be recalculated to support training (if provided)
332
+ image_token_index (`int`, *optional*)
333
+ Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
334
+ ignore_index (`int`, *optional*)
335
+ Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
336
+ Returns:
337
+ final_embedding, final_attention_mask, position_ids, final_labels
338
+
339
+ Explanation:
340
+ each image has variable length embeddings, with length specified by feature_lens
341
+ image_features is concatenation of all visual embed vectors
342
+ task: fill each <image> with the correct number of visual embeddings
343
+ Example:
344
+ X (5 patches), Y (3 patches), Z (8)
345
+ X, Y are in the same sequence (in-context learning)
346
+ if right padding
347
+ input_ids: [
348
+ a b c d e f X g h i j k Y l m
349
+ o p q r Z s t u v _ _ _ _ _ _
350
+ ]
351
+ input_ids should be: [
352
+ a b c d e f X X X X X g h i j k Y Y Y l m
353
+ o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
354
+ ]
355
+ labels should be: [
356
+ a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
357
+ o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
358
+ ]
359
+ elif left padding
360
+ input_ids: [
361
+ a b c d e f X g h i j k Y l m
362
+ _ _ _ _ _ _ o p q r Z s t u v
363
+ ]
364
+ input_ids should be: [
365
+ a b c d e f X X X X X g h i j k Y Y Y l m
366
+ _ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
367
+ ]
368
+ labels should be: [
369
+ a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
370
+ _ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
371
+ ]
372
+ Edge cases:
373
+ * If tokens are same but image token sizes are different, then cannot infer left or right padding
374
+ ```python
375
+ cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
376
+ chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw)
377
+ prompts = [
378
+ "[INST] <image>\nWhat is shown in this image? [/INST]",
379
+ "[INST] <image>\nWhat is shown in this image? [/INST]",
380
+ ]
381
+ inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda")
382
+ chart_img has 2634 tokens, while cat_img has 2340 tokens
383
+ ```
384
+
385
+ input_ids: [
386
+ a b c d X g h
387
+ i j Y k l m n
388
+ ]
389
+ where X is 3 tokens while Y is 5, this mean after merge
390
+ if left-padding (batched generation)
391
+ input_ids should be: [
392
+ _ _ a b c d X X X g h
393
+ i j Y Y Y Y Y k l m n
394
+ ]
395
+ elif (right padding) (training)
396
+ input_ids should be: [
397
+ a b c d X X X g h _ _
398
+ i j Y Y Y Y Y k l m n
399
+ ]
400
+ """
401
+ image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
402
+ ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
403
+
404
+ with torch.no_grad():
405
+ num_images = feature_lens.size(0)
406
+ num_image_features, embed_dim = image_features.shape
407
+ if feature_lens.sum() != num_image_features:
408
+ raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
409
+ batch_size = input_ids.shape[0]
410
+ _left_padding = torch.any(attention_mask[:, 0] == 0)
411
+ _right_padding = torch.any(attention_mask[:, -1] == 0)
412
+
413
+ left_padding = True if not self.training else False
414
+ if batch_size > 1 and not self.training:
415
+ if _left_padding and not _right_padding:
416
+ left_padding = True
417
+ elif not _left_padding and _right_padding:
418
+ left_padding = False
419
+ elif not _left_padding and not _right_padding:
420
+ # both side is 1, so cannot tell
421
+ left_padding = self.padding_side == "left"
422
+ else:
423
+ # invalid attention_mask
424
+ raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
425
+
426
+ # Whether to turn off right padding
427
+ # 1. Create a mask to know where special image tokens are
428
+ special_image_token_mask = input_ids == image_token_index
429
+ # special_image_token_mask: [bsz, seqlen]
430
+ num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
431
+ # num_special_image_tokens: [bsz]
432
+ # Reserve for padding of num_images
433
+ total_num_special_image_tokens = torch.sum(special_image_token_mask)
434
+ if total_num_special_image_tokens != num_images:
435
+ raise ValueError(
436
+ f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
437
+ )
438
+ # Compute the maximum embed dimension
439
+ # max_image_feature_lens is max_feature_lens per batch
440
+ feature_lens = feature_lens.to(input_ids.device)
441
+ feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
442
+ feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device)
443
+ embed_sequence_lengths = (
444
+ (attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
445
+ )
446
+ max_embed_dim = embed_sequence_lengths.max()
447
+
448
+ batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
449
+ # 2. Compute the positions where text should be written
450
+ # Calculate new positions for text tokens in merged image-text sequence.
451
+ # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
452
+ # `torch.cumsum` computes how each image token shifts subsequent text token positions.
453
+ # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
454
+ # ! instead of special_image_token_mask * (num_image_patches - 1)
455
+ # special_image_token_mask * (num_feature_len - 1)
456
+ special_image_token_mask = special_image_token_mask.long()
457
+ special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
458
+ new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
459
+ if left_padding:
460
+ # shift right token positions so that they are ending at the same number
461
+ # the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
462
+ new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
463
+
464
+ text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
465
+
466
+ # 3. Create the full embedding, already padded to the maximum position
467
+ final_embedding = torch.zeros(
468
+ batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
469
+ )
470
+ final_attention_mask = torch.zeros(
471
+ batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
472
+ )
473
+ final_input_ids = torch.full(
474
+ (batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device
475
+ )
476
+ # In case the Vision model or the Language model has been offloaded to CPU, we need to manually
477
+ # set the corresponding tensors into their correct target device.
478
+ target_device = inputs_embeds.device
479
+ batch_indices, non_image_indices, text_to_overwrite = (
480
+ batch_indices.to(target_device),
481
+ non_image_indices.to(target_device),
482
+ text_to_overwrite.to(target_device),
483
+ )
484
+ attention_mask = attention_mask.to(target_device)
485
+ input_ids = input_ids.to(target_device)
486
+
487
+ # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
488
+ # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
489
+ final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
490
+ final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
491
+ final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices]
492
+ final_labels = None
493
+ if labels is not None:
494
+ labels = labels.to(target_device)
495
+ final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
496
+ final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
497
+
498
+ # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
499
+ with torch.no_grad():
500
+ image_to_overwrite = torch.full(
501
+ (batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
502
+ )
503
+ image_to_overwrite[batch_indices, text_to_overwrite] = False
504
+ embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
505
+ embed_indices = embed_indices.expand(batch_size, max_embed_dim)
506
+ embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
507
+
508
+ if left_padding:
509
+ # exclude padding on the left
510
+ max_embed_dim = max_embed_dim.to(target_device)
511
+ val = (max_embed_dim - embed_indices) <= embed_seq_lens
512
+ else:
513
+ # exclude padding on the right
514
+ val = embed_indices < embed_seq_lens
515
+ image_to_overwrite &= val
516
+
517
+ if image_to_overwrite.sum() != num_image_features:
518
+ raise ValueError(
519
+ f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
520
+ f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
521
+ f" the number of image given to the model is {num_images}. "
522
+ f"This prevents correct indexing and breaks batch generation."
523
+ )
524
+ final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
525
+ final_attention_mask |= image_to_overwrite
526
+ position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
527
+
528
+ return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids
529
+
530
+ @add_start_docstrings_to_model_forward(EMOVA_INPUTS_DOCSTRING)
531
+ @replace_return_docstrings(output_type=EMOVACausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
532
+ def forward(
533
+ self,
534
+ input_ids: torch.LongTensor = None,
535
+ pixel_values: torch.FloatTensor = None,
536
+ image_sizes: Optional[torch.LongTensor] = None,
537
+ attention_mask: Optional[torch.Tensor] = None,
538
+ position_ids: Optional[torch.LongTensor] = None,
539
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
540
+ inputs_embeds: Optional[torch.FloatTensor] = None,
541
+ vision_feature_layer: Optional[int] = None,
542
+ vision_feature_select_strategy: Optional[str] = None,
543
+ labels: Optional[torch.LongTensor] = None,
544
+ use_cache: Optional[bool] = None,
545
+ output_attentions: Optional[bool] = None,
546
+ output_hidden_states: Optional[bool] = None,
547
+ return_dict: Optional[bool] = None,
548
+ ) -> Union[Tuple, EMOVACausalLMOutputWithPast]:
549
+ r"""
550
+ Args:
551
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
552
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
553
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
554
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
555
+
556
+ Returns:
557
+
558
+ Example:
559
+
560
+ ```python
561
+ >>> from PIL import Image
562
+ >>> import requests
563
+ >>> from transformers import AutoProcessor, EMOVAForConditionalGeneration
564
+
565
+ >>> model = EMOVAForConditionalGeneration.from_pretrained("Emova-ollm/emova-qwen-2-5-7b-hf")
566
+ >>> processor = AutoProcessor.from_pretrained("Emova-ollm/emova-qwen-2-5-7b-hf")
567
+
568
+ >>> prompt = "<image>\nWhat is shown in this image?"
569
+ >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
570
+ >>> image = Image.open(requests.get(url, stream=True).raw)
571
+
572
+ >>> inputs = processor(text=prompt, images=image, return_tensors="pt")
573
+
574
+ >>> # Generate
575
+ >>> generate_ids = model.generate(**inputs, max_length=30)
576
+ >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
577
+ "\nWhat is shown in this image? The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
578
+ ```"""
579
+
580
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
581
+ output_hidden_states = (
582
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
583
+ )
584
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
585
+
586
+ if inputs_embeds is None:
587
+ # 1. Extract the input embeddings
588
+ # In case image_token_index is not in the embeddings (extra token but embedding don't have it)
589
+ for_inputs_embeds_ids = input_ids.clone()
590
+ for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0
591
+ inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids)
592
+
593
+ # 2. Merge text and images
594
+ if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0:
595
+ # ! infer image_num_patches from image_sizes
596
+
597
+ image_features = self.vision_tower(pixel_values.to(self.dtype), image_sizes)
598
+ image_features = self.multi_modal_projector(image_features)
599
+
600
+ spatial_merge_size = self.vision_tower.spatial_merge_size
601
+ feature_lens = torch.as_tensor(
602
+ [t * h * w // (self.vision_tower.spatial_merge_size ** 2) for t, h, w in image_sizes])
603
+ image_num_patches = sum(feature_lens)
604
+
605
+ # NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
606
+ inputs_embeds = inputs_embeds.to(image_features.dtype)
607
+ inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features(
608
+ image_features,
609
+ feature_lens,
610
+ inputs_embeds,
611
+ input_ids,
612
+ attention_mask,
613
+ position_ids,
614
+ labels=labels,
615
+ )
616
+
617
+ # pixel_values is not None but is empty ---> text only cases
618
+ elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0:
619
+ # there are no images
620
+ pass
621
+
622
+ # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of
623
+ # generation with cache
624
+ elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1:
625
+ # Retrieve the first layer to inspect the logits and mask out the hidden states
626
+ # that are set to 0
627
+ first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
628
+
629
+ # Sum all dimensions of head_dim (-2) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
630
+ batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0)
631
+
632
+ # Get the target length
633
+ target_length = input_ids.shape[1]
634
+ past_length = first_layer_past_key_value.shape[-1]
635
+
636
+ extended_attention_mask = torch.ones(
637
+ (attention_mask.shape[0], past_length),
638
+ dtype=attention_mask.dtype,
639
+ device=attention_mask.device,
640
+ )
641
+
642
+ # Filter out only the tokens that can be un-attended, this can happen
643
+ # if one uses EMOVA + Fused modules where the cache on the
644
+ # first iteration is already big enough, or if one passes custom cache
645
+ valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
646
+ new_batch_index = batch_index[valid_indices]
647
+ new_non_attended_tokens = non_attended_tokens[valid_indices]
648
+
649
+ # Zero-out the places where we don't need to attend
650
+ extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
651
+
652
+ attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1)
653
+
654
+ position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
655
+
656
+ outputs = self.language_model(
657
+ attention_mask=attention_mask.to(inputs_embeds.device),
658
+ position_ids=position_ids,
659
+ past_key_values=past_key_values,
660
+ inputs_embeds=inputs_embeds,
661
+ use_cache=use_cache,
662
+ output_attentions=output_attentions,
663
+ output_hidden_states=output_hidden_states,
664
+ return_dict=return_dict,
665
+ )
666
+
667
+ logits = outputs[0]
668
+
669
+ loss = None
670
+ if labels is not None:
671
+ # Shift so that tokens < n predict n
672
+ if attention_mask is not None:
673
+ shift_attention_mask = attention_mask[..., 1:]
674
+ shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
675
+ shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
676
+ else:
677
+ shift_logits = logits[..., :-1, :].contiguous()
678
+ shift_labels = labels[..., 1:].contiguous()
679
+ # Flatten the tokens
680
+ loss_fct = nn.CrossEntropyLoss()
681
+ loss = loss_fct(
682
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
683
+ )
684
+
685
+ if not return_dict:
686
+ output = (logits,) + outputs[1:]
687
+ return (loss,) + output if loss is not None else output
688
+
689
+ return EMOVACausalLMOutputWithPast(
690
+ loss=loss,
691
+ logits=logits,
692
+ past_key_values=outputs.past_key_values,
693
+ hidden_states=outputs.hidden_states,
694
+ attentions=outputs.attentions,
695
+ )
696
+
697
+ def prepare_inputs_for_generation(
698
+ self,
699
+ input_ids,
700
+ past_key_values=None,
701
+ inputs_embeds=None,
702
+ pixel_values=None,
703
+ image_sizes=None,
704
+ attention_mask=None,
705
+ **kwargs,
706
+ ):
707
+ if past_key_values is not None:
708
+ if isinstance(past_key_values, Cache):
709
+ cache_length = past_key_values.get_seq_length()
710
+ past_length = past_key_values.seen_tokens
711
+ else:
712
+ cache_length = past_length = past_key_values[0][0].shape[2]
713
+
714
+ # Keep only the unprocessed tokens:
715
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
716
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
717
+ # input)
718
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
719
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
720
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
721
+ # input_ids based on the past_length.
722
+ elif past_length < input_ids.shape[1]:
723
+ input_ids = input_ids[:, past_length:]
724
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
725
+ elif self.config.image_token_index in input_ids:
726
+ input_ids = input_ids[:, input_ids.shape[1] - 1:]
727
+ # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
728
+ # older attention values, as their corresponding values are not part of the input.
729
+ if cache_length < past_length and attention_mask is not None:
730
+ attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]):]
731
+
732
+ position_ids = kwargs.get("position_ids", None)
733
+ if attention_mask is not None and position_ids is None:
734
+ # create position_ids on the fly for batch generation
735
+ position_ids = attention_mask.long().cumsum(-1) - 1
736
+ position_ids.masked_fill_(attention_mask == 0, 1)
737
+ if past_key_values:
738
+ position_ids = position_ids[:, -input_ids.shape[1]:]
739
+
740
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
741
+ if inputs_embeds is not None and past_key_values is None:
742
+ model_inputs = {"inputs_embeds": inputs_embeds}
743
+ else:
744
+ model_inputs = {"input_ids": input_ids}
745
+
746
+ model_inputs.update(
747
+ {
748
+ "position_ids": position_ids,
749
+ "past_key_values": past_key_values,
750
+ "use_cache": kwargs.get("use_cache"),
751
+ "attention_mask": attention_mask,
752
+ "pixel_values": pixel_values,
753
+ "image_sizes": image_sizes,
754
+ }
755
+ )
756
+ return model_inputs
757
+
758
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
759
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
760
+ verbose=False):
761
+ raise RuntimeError("!!!")
762
+
763
+ if history is None and pixel_values is not None and '<image>' not in question:
764
+ question = '<image>\n' + question
765
+
766
+ if num_patches_list is None:
767
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
768
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
769
+
770
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
771
+ self.img_context_token_id = img_context_token_id
772
+
773
+ template = get_conv_template(self.template)
774
+ template.system_message = self.system_message
775
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
776
+
777
+ history = [] if history is None else history
778
+ for (old_question, old_answer) in history:
779
+ template.append_message(template.roles[0], old_question)
780
+ template.append_message(template.roles[1], old_answer)
781
+ template.append_message(template.roles[0], question)
782
+ template.append_message(template.roles[1], None)
783
+ query = template.get_prompt()
784
+
785
+ if verbose and pixel_values is not None:
786
+ image_bs = pixel_values.shape[0]
787
+ print(f'dynamic ViT batch size: {image_bs}')
788
+
789
+ for num_patches in num_patches_list:
790
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
791
+ query = query.replace('<image>', image_tokens, 1)
792
+
793
+ model_inputs = tokenizer(query, return_tensors='pt')
794
+ input_ids = model_inputs['input_ids'].cuda()
795
+ attention_mask = model_inputs['attention_mask'].cuda()
796
+ generation_config['eos_token_id'] = eos_token_id
797
+ generation_output = self.generate(
798
+ pixel_values=pixel_values,
799
+ input_ids=input_ids,
800
+ attention_mask=attention_mask,
801
+ **generation_config
802
+ )
803
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
804
+ response = response.split(template.sep)[0].strip()
805
+ history.append((question, response))
806
+ if return_history:
807
+ return response, history
808
+ else:
809
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
810
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
811
+ if verbose:
812
+ print(query_to_print, response)
813
+ return response
814
+
815
+ def _reorder_cache(self, *args, **kwargs):
816
+ return self.language_model._reorder_cache(*args, **kwargs)
modeling_qwen2vit.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch Qwen2-VL model."""
21
+
22
+ import math
23
+ from dataclasses import dataclass
24
+ from typing import Any, Dict, List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn as nn
28
+ import torch.nn.functional as F
29
+ import torch.utils.checkpoint
30
+ from torch.nn import CrossEntropyLoss, LayerNorm
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (
35
+ is_flash_attn_2_available,
36
+ logging,
37
+ )
38
+ from .configuration_qwen2vit import Qwen2VLVisionConfig
39
+
40
+ if is_flash_attn_2_available():
41
+ from flash_attn import flash_attn_varlen_func
42
+
43
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
44
+ else:
45
+ flash_attn_varlen_func = None
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+
50
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
51
+ def rotate_half(x):
52
+ """Rotates half the hidden dims of the input."""
53
+ x1 = x[..., : x.shape[-1] // 2]
54
+ x2 = x[..., x.shape[-1] // 2:]
55
+ return torch.cat((-x2, x1), dim=-1)
56
+
57
+
58
+ def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
59
+ orig_dtype = tensor.dtype
60
+ tensor = tensor.float()
61
+ cos = freqs.cos()
62
+ sin = freqs.sin()
63
+ cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
64
+ sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
65
+ output = (tensor * cos) + (rotate_half(tensor) * sin)
66
+ output = output.to(orig_dtype)
67
+ return output
68
+
69
+
70
+ class VisionRotaryEmbedding(nn.Module):
71
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
72
+ super().__init__()
73
+ inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
74
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
75
+
76
+ def forward(self, seqlen: int) -> torch.Tensor:
77
+ seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
78
+ freqs = torch.outer(seq, self.inv_freq)
79
+ return freqs
80
+
81
+
82
+ class PatchEmbed(nn.Module):
83
+ def __init__(
84
+ self,
85
+ patch_size: int = 14,
86
+ temporal_patch_size: int = 2,
87
+ in_channels: int = 3,
88
+ embed_dim: int = 1152,
89
+ ) -> None:
90
+ super().__init__()
91
+ self.patch_size = patch_size
92
+ self.temporal_patch_size = temporal_patch_size
93
+ self.in_channels = in_channels
94
+ self.embed_dim = embed_dim
95
+
96
+ kernel_size = [temporal_patch_size, patch_size, patch_size]
97
+ self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)
98
+
99
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
100
+ target_dtype = self.proj.weight.dtype
101
+ hidden_states = hidden_states.view(
102
+ -1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
103
+ )
104
+ hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
105
+ return hidden_states
106
+
107
+
108
+ class PatchMerger(nn.Module):
109
+ def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
110
+ super().__init__()
111
+ self.hidden_size = context_dim * (spatial_merge_size ** 2)
112
+ self.ln_q = LayerNorm(context_dim, eps=1e-6)
113
+ self.mlp = nn.Sequential(
114
+ nn.Linear(self.hidden_size, self.hidden_size),
115
+ nn.GELU(),
116
+ nn.Linear(self.hidden_size, dim),
117
+ )
118
+
119
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
120
+ x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
121
+ return x
122
+
123
+
124
+ class VisionMlp(nn.Module):
125
+ def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
126
+ super().__init__()
127
+ self.fc1 = nn.Linear(dim, hidden_dim)
128
+ self.act = ACT2FN[hidden_act]
129
+ self.fc2 = nn.Linear(hidden_dim, dim)
130
+
131
+ def forward(self, x) -> torch.Tensor:
132
+ return self.fc2(self.act(self.fc1(x)))
133
+
134
+
135
+ class VisionAttention(nn.Module):
136
+ def __init__(self, dim: int, num_heads: int = 16) -> None:
137
+ super().__init__()
138
+ self.num_heads = num_heads
139
+ self.head_dim = dim // num_heads
140
+ self.qkv = nn.Linear(dim, dim * 3, bias=True)
141
+ self.proj = nn.Linear(dim, dim)
142
+
143
+ def forward(
144
+ self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
145
+ ) -> torch.Tensor:
146
+ seq_length = hidden_states.shape[0]
147
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
148
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
149
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
150
+
151
+ attention_mask = torch.full(
152
+ [1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
153
+ )
154
+ for i in range(1, len(cu_seqlens)):
155
+ attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = 0
156
+
157
+ q = q.transpose(0, 1)
158
+ k = k.transpose(0, 1)
159
+ v = v.transpose(0, 1)
160
+ attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
161
+ attn_weights = attn_weights + attention_mask
162
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
163
+ attn_output = torch.matmul(attn_weights, v)
164
+ attn_output = attn_output.transpose(0, 1)
165
+ attn_output = attn_output.reshape(seq_length, -1)
166
+ attn_output = self.proj(attn_output)
167
+ return attn_output
168
+
169
+
170
+ class VisionFlashAttention2(nn.Module):
171
+ def __init__(self, dim: int, num_heads: int = 16) -> None:
172
+ super().__init__()
173
+ self.num_heads = num_heads
174
+ self.qkv = nn.Linear(dim, dim * 3, bias=True)
175
+ self.proj = nn.Linear(dim, dim)
176
+
177
+ def forward(
178
+ self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
179
+ ) -> torch.Tensor:
180
+ seq_length = hidden_states.shape[0]
181
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
182
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
183
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
184
+
185
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
186
+ attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
187
+ seq_length, -1
188
+ )
189
+ attn_output = self.proj(attn_output)
190
+ return attn_output
191
+
192
+
193
+ class VisionSdpaAttention(nn.Module):
194
+ def __init__(self, dim: int, num_heads: int = 16) -> None:
195
+ super().__init__()
196
+ self.num_heads = num_heads
197
+ self.qkv = nn.Linear(dim, dim * 3, bias=True)
198
+ self.proj = nn.Linear(dim, dim)
199
+
200
+ def forward(
201
+ self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
202
+ ) -> torch.Tensor:
203
+ seq_length = hidden_states.shape[0]
204
+ q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
205
+ q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
206
+ k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
207
+
208
+ attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
209
+ for i in range(1, len(cu_seqlens)):
210
+ attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = True
211
+ q = q.transpose(0, 1)
212
+ k = k.transpose(0, 1)
213
+ v = v.transpose(0, 1)
214
+ attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
215
+ attn_output = attn_output.transpose(0, 1)
216
+ attn_output = attn_output.reshape(seq_length, -1)
217
+ attn_output = self.proj(attn_output)
218
+ return attn_output
219
+
220
+
221
+ QWEN2_VL_VISION_ATTENTION_CLASSES = {
222
+ "eager": VisionAttention,
223
+ "flash_attention_2": VisionFlashAttention2,
224
+ "sdpa": VisionSdpaAttention,
225
+ }
226
+
227
+
228
+ class Qwen2VLVisionBlock(nn.Module):
229
+ def __init__(self, config, attn_implementation: str = "sdpa") -> None:
230
+ super().__init__()
231
+ self.norm1 = LayerNorm(config.embed_dim, eps=1e-6)
232
+ self.norm2 = LayerNorm(config.embed_dim, eps=1e-6)
233
+ mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
234
+
235
+ self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation](
236
+ config.embed_dim, num_heads=config.num_heads
237
+ )
238
+ self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act)
239
+
240
+ def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
241
+ hidden_states = hidden_states + self.attn(
242
+ self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
243
+ )
244
+ hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
245
+ return hidden_states
246
+
247
+
248
+ class Qwen2VisionTower(PreTrainedModel):
249
+ config_class = Qwen2VLVisionConfig
250
+ _no_split_modules = ["Qwen2VLVisionBlock"]
251
+ base_model_prefix = "model"
252
+ supports_gradient_checkpointing = True
253
+ _supports_flash_attn_2 = True
254
+ _supports_sdpa = True
255
+
256
+ def _init_weights(self, module):
257
+ std = self.config.initializer_range
258
+ if isinstance(module, (nn.Linear, nn.Conv3d)):
259
+ module.weight.data.normal_(mean=0.0, std=std)
260
+ if module.bias is not None:
261
+ module.bias.data.zero_()
262
+ elif isinstance(module, nn.Embedding):
263
+ module.weight.data.normal_(mean=0.0, std=std)
264
+ if module.padding_idx is not None:
265
+ module.weight.data[module.padding_idx].zero_()
266
+
267
+ def __init__(self, config) -> None:
268
+ super().__init__(config)
269
+ self.spatial_merge_size = config.spatial_merge_size
270
+
271
+ self.patch_embed = PatchEmbed(
272
+ patch_size=config.patch_size,
273
+ temporal_patch_size=config.temporal_patch_size,
274
+ in_channels=config.in_channels,
275
+ embed_dim=config.embed_dim,
276
+ )
277
+
278
+ head_dim = config.embed_dim // config.num_heads
279
+ self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
280
+
281
+ self.blocks = nn.ModuleList(
282
+ [Qwen2VLVisionBlock(config, "eager") for _ in range(config.depth)]
283
+ )
284
+ self.merger = PatchMerger(
285
+ dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size
286
+ )
287
+
288
+ def get_dtype(self) -> torch.dtype:
289
+ return self.blocks[0].mlp.fc2.weight.dtype
290
+
291
+ def get_device(self) -> torch.device:
292
+ return self.blocks[0].mlp.fc2.weight.device
293
+
294
+ def rot_pos_emb(self, grid_thw):
295
+ pos_ids = []
296
+ for t, h, w in grid_thw:
297
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
298
+ hpos_ids = hpos_ids.reshape(
299
+ h // self.spatial_merge_size,
300
+ self.spatial_merge_size,
301
+ w // self.spatial_merge_size,
302
+ self.spatial_merge_size,
303
+ )
304
+ hpos_ids = hpos_ids.permute(0, 2, 1, 3)
305
+ hpos_ids = hpos_ids.flatten()
306
+
307
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
308
+ wpos_ids = wpos_ids.reshape(
309
+ h // self.spatial_merge_size,
310
+ self.spatial_merge_size,
311
+ w // self.spatial_merge_size,
312
+ self.spatial_merge_size,
313
+ )
314
+ wpos_ids = wpos_ids.permute(0, 2, 1, 3)
315
+ wpos_ids = wpos_ids.flatten()
316
+ pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
317
+ pos_ids = torch.cat(pos_ids, dim=0)
318
+ max_grid_size = grid_thw[:, 1:].max()
319
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
320
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
321
+ return rotary_pos_emb
322
+
323
+ def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
324
+ hidden_states = self.patch_embed(hidden_states)
325
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
326
+
327
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
328
+ dim=0, dtype=torch.int32
329
+ )
330
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
331
+
332
+ for blk in self.blocks:
333
+ hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
334
+
335
+ return self.merger(hidden_states)