|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch EMOVA model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from functools import partial |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers import PreTrainedModel |
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache |
|
from transformers.image_processing_utils import select_best_resolution |
|
from transformers.modeling_outputs import ModelOutput |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.models.auto import AutoModel, AutoModelForCausalLM |
|
|
|
from .configuration_emova import EMOVAConfig |
|
from .modeling_qwen2vit import Qwen2VisionTower |
|
|
|
from timm.models.regnet import RegStage |
|
|
|
try: |
|
from timm.layers import LayerNorm2d |
|
except: |
|
from timm.models.layers import LayerNorm2d |
|
from einops import rearrange |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "EMOVAConfig" |
|
|
|
|
|
@dataclass |
|
class EMOVACausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for EMOVA causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): |
|
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, |
|
sequence_length, hidden_size)`. |
|
|
|
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
class EMOVAMultiModalProjector(nn.Sequential): |
|
|
|
def __init__(self, config): |
|
super(EMOVAMultiModalProjector, self).__init__() |
|
hidden_size = config.text_config.hidden_size |
|
mm_hidden_size = config.vision_config.hidden_size |
|
mlp_depth = config.mm_projector_config['mlp_depth'] |
|
|
|
modules = [nn.Linear(mm_hidden_size, hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(hidden_size, hidden_size)) |
|
super(EMOVAMultiModalProjector, self).__init__(*modules) |
|
|
|
|
|
EMOVA_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`EMOVAConfig`] or [`EMOVAVisionConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
EMOVA_START_DOCSTRING, |
|
) |
|
class EMOVAPreTrainedModel(PreTrainedModel): |
|
config_class = EMOVAConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["EMOVAVisionAttention"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = ( |
|
self.config.initializer_range |
|
if hasattr(self.config, "initializer_range") |
|
else self.config.text_config.initializer_range |
|
) |
|
|
|
if hasattr(module, "class_embedding"): |
|
module.class_embedding.data.normal_(mean=0.0, std=std) |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@property |
|
def _supports_sdpa(self): |
|
""" |
|
Retrieve language_model's attribute to check whether the model supports |
|
SDPA or not. |
|
""" |
|
return self.language_model._supports_sdpa |
|
|
|
|
|
EMOVA_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): |
|
The tensors corresponding to the input images. Pixel values can be obtained using |
|
[`AutoImageProcessor`]. See [`EMOVAImageProcessor.__call__`] for details. [`EMOVAProcessor`] uses |
|
[`EMOVAImageProcessor`] for processing images. |
|
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*): |
|
The sizes of the images in the batch, being (height, width) for each image. |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
vision_feature_layer (`int`, *optional*, defaults to -2): |
|
The index of the layer to select the vision feature. |
|
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): |
|
The feature selection strategy used to select the vision feature from the vision backbone. |
|
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features. |
|
If `"full"`, the full vision features are used. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"""The EMOVA model which consists of a vision backbone and a language model.""", |
|
EMOVA_START_DOCSTRING, |
|
) |
|
class EMOVAForConditionalGeneration(EMOVAPreTrainedModel): |
|
def __init__(self, config: EMOVAConfig, **kwargs): |
|
super().__init__(config) |
|
self.vision_tower = Qwen2VisionTower(config.vision_config) |
|
self.multi_modal_projector = EMOVAMultiModalProjector(config) |
|
|
|
self.vocab_size = config.text_config.vocab_size |
|
self.language_model = AutoModelForCausalLM.from_config( |
|
config.text_config, attn_implementation=config._attn_implementation |
|
) |
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
self._padding_side = "left" |
|
self.post_init() |
|
|
|
@property |
|
def padding_side(self): |
|
return self._padding_side |
|
|
|
@padding_side.setter |
|
def padding_side(self, padding_side: str): |
|
if padding_side not in ["left", "right"]: |
|
raise ValueError(f"{padding_side} is not `left` or `right`.") |
|
self._padding_side = padding_side |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: |
|
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
def _merge_input_ids_with_image_features( |
|
self, |
|
image_features, |
|
feature_lens, |
|
inputs_embeds, |
|
input_ids, |
|
attention_mask, |
|
position_ids=None, |
|
labels=None, |
|
image_token_index=None, |
|
ignore_index=-100, |
|
): |
|
""" |
|
Merge input_ids with with image features into final embeddings |
|
|
|
Args: |
|
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`): |
|
All vision vectors of all images in the batch |
|
feature_lens (`torch.LongTensor` of shape `(num_images)`): |
|
The length of visual embeddings of each image as stacked in `image_features` |
|
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`): |
|
Token embeddings before merging with visual embeddings |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Input_ids of tokens, possibly filled with image token |
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Mask to avoid performing attention on padding token indices. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*) |
|
:abels need to be recalculated to support training (if provided) |
|
image_token_index (`int`, *optional*) |
|
Token id used to indicate the special "image" token. Defaults to `config.image_token_index` |
|
ignore_index (`int`, *optional*) |
|
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100. |
|
Returns: |
|
final_embedding, final_attention_mask, position_ids, final_labels |
|
|
|
Explanation: |
|
each image has variable length embeddings, with length specified by feature_lens |
|
image_features is concatenation of all visual embed vectors |
|
task: fill each <image> with the correct number of visual embeddings |
|
Example: |
|
X (5 patches), Y (3 patches), Z (8) |
|
X, Y are in the same sequence (in-context learning) |
|
if right padding |
|
input_ids: [ |
|
a b c d e f X g h i j k Y l m |
|
o p q r Z s t u v _ _ _ _ _ _ |
|
] |
|
input_ids should be: [ |
|
a b c d e f X X X X X g h i j k Y Y Y l m |
|
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _ |
|
] |
|
labels should be: [ |
|
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m |
|
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _ |
|
] |
|
elif left padding |
|
input_ids: [ |
|
a b c d e f X g h i j k Y l m |
|
_ _ _ _ _ _ o p q r Z s t u v |
|
] |
|
input_ids should be: [ |
|
a b c d e f X X X X X g h i j k Y Y Y l m |
|
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v |
|
] |
|
labels should be: [ |
|
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m |
|
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v |
|
] |
|
Edge cases: |
|
* If tokens are same but image token sizes are different, then cannot infer left or right padding |
|
```python |
|
cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) |
|
chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw) |
|
prompts = [ |
|
"[INST] <image>\nWhat is shown in this image? [/INST]", |
|
"[INST] <image>\nWhat is shown in this image? [/INST]", |
|
] |
|
inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda") |
|
chart_img has 2634 tokens, while cat_img has 2340 tokens |
|
``` |
|
|
|
input_ids: [ |
|
a b c d X g h |
|
i j Y k l m n |
|
] |
|
where X is 3 tokens while Y is 5, this mean after merge |
|
if left-padding (batched generation) |
|
input_ids should be: [ |
|
_ _ a b c d X X X g h |
|
i j Y Y Y Y Y k l m n |
|
] |
|
elif (right padding) (training) |
|
input_ids should be: [ |
|
a b c d X X X g h _ _ |
|
i j Y Y Y Y Y k l m n |
|
] |
|
""" |
|
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index |
|
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index |
|
|
|
with torch.no_grad(): |
|
num_images = feature_lens.size(0) |
|
num_image_features, embed_dim = image_features.shape |
|
if feature_lens.sum() != num_image_features: |
|
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}") |
|
batch_size = input_ids.shape[0] |
|
_left_padding = torch.any(attention_mask[:, 0] == 0) |
|
_right_padding = torch.any(attention_mask[:, -1] == 0) |
|
|
|
left_padding = True if not self.training else False |
|
if batch_size > 1 and not self.training: |
|
if _left_padding and not _right_padding: |
|
left_padding = True |
|
elif not _left_padding and _right_padding: |
|
left_padding = False |
|
elif not _left_padding and not _right_padding: |
|
|
|
left_padding = self.padding_side == "left" |
|
else: |
|
|
|
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}") |
|
|
|
|
|
|
|
special_image_token_mask = input_ids == image_token_index |
|
|
|
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) |
|
|
|
|
|
total_num_special_image_tokens = torch.sum(special_image_token_mask) |
|
if total_num_special_image_tokens != num_images: |
|
raise ValueError( |
|
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})." |
|
) |
|
|
|
|
|
feature_lens = feature_lens.to(input_ids.device) |
|
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0) |
|
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device) |
|
embed_sequence_lengths = ( |
|
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum |
|
) |
|
max_embed_dim = embed_sequence_lengths.max() |
|
|
|
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
special_image_token_mask = special_image_token_mask.long() |
|
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1 |
|
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1 |
|
if left_padding: |
|
|
|
|
|
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:] |
|
|
|
text_to_overwrite = new_token_positions[batch_indices, non_image_indices] |
|
|
|
|
|
final_embedding = torch.zeros( |
|
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device |
|
) |
|
final_attention_mask = torch.zeros( |
|
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device |
|
) |
|
final_input_ids = torch.full( |
|
(batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device |
|
) |
|
|
|
|
|
target_device = inputs_embeds.device |
|
batch_indices, non_image_indices, text_to_overwrite = ( |
|
batch_indices.to(target_device), |
|
non_image_indices.to(target_device), |
|
text_to_overwrite.to(target_device), |
|
) |
|
attention_mask = attention_mask.to(target_device) |
|
input_ids = input_ids.to(target_device) |
|
|
|
|
|
|
|
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] |
|
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] |
|
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices] |
|
final_labels = None |
|
if labels is not None: |
|
labels = labels.to(target_device) |
|
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long) |
|
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] |
|
|
|
|
|
with torch.no_grad(): |
|
image_to_overwrite = torch.full( |
|
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
image_to_overwrite[batch_indices, text_to_overwrite] = False |
|
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device) |
|
embed_indices = embed_indices.expand(batch_size, max_embed_dim) |
|
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device) |
|
|
|
if left_padding: |
|
|
|
max_embed_dim = max_embed_dim.to(target_device) |
|
val = (max_embed_dim - embed_indices) <= embed_seq_lens |
|
else: |
|
|
|
val = embed_indices < embed_seq_lens |
|
image_to_overwrite &= val |
|
|
|
if image_to_overwrite.sum() != num_image_features: |
|
raise ValueError( |
|
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. " |
|
f"The number of image tokens is {torch.sum(special_image_token_mask)} while" |
|
f" the number of image given to the model is {num_images}. " |
|
f"This prevents correct indexing and breaks batch generation." |
|
) |
|
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) |
|
final_attention_mask |= image_to_overwrite |
|
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) |
|
|
|
return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids |
|
|
|
@add_start_docstrings_to_model_forward(EMOVA_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=EMOVACausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values: torch.FloatTensor = None, |
|
image_sizes: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
vision_feature_layer: Optional[int] = None, |
|
vision_feature_select_strategy: Optional[str] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, EMOVACausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, EMOVAForConditionalGeneration |
|
|
|
>>> model = EMOVAForConditionalGeneration.from_pretrained("Emova-ollm/emova-qwen-2-5-7b-hf") |
|
>>> processor = AutoProcessor.from_pretrained("Emova-ollm/emova-qwen-2-5-7b-hf") |
|
|
|
>>> prompt = "<image>\nWhat is shown in this image?" |
|
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(text=prompt, images=image, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(**inputs, max_length=30) |
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"\nWhat is shown in this image? The image appears to be a radar chart, which is a type of multi-dimensional plot (...)" |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if inputs_embeds is None: |
|
|
|
|
|
for_inputs_embeds_ids = input_ids.clone() |
|
for_inputs_embeds_ids[(input_ids == self.config.image_token_index)] = 0 |
|
inputs_embeds = self.get_input_embeddings()(for_inputs_embeds_ids) |
|
|
|
|
|
if pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) > 0: |
|
|
|
|
|
image_features = self.vision_tower(pixel_values.to(self.dtype), image_sizes) |
|
image_features = self.multi_modal_projector(image_features) |
|
|
|
spatial_merge_size = self.vision_tower.spatial_merge_size |
|
feature_lens = torch.as_tensor( |
|
[t * h * w // (self.vision_tower.spatial_merge_size ** 2) for t, h, w in image_sizes]) |
|
image_num_patches = sum(feature_lens) |
|
|
|
|
|
inputs_embeds = inputs_embeds.to(image_features.dtype) |
|
inputs_embeds, attention_mask, position_ids, labels, _ = self._merge_input_ids_with_image_features( |
|
image_features, |
|
feature_lens, |
|
inputs_embeds, |
|
input_ids, |
|
attention_mask, |
|
position_ids, |
|
labels=labels, |
|
) |
|
|
|
|
|
elif pixel_values is not None and input_ids.shape[1] != 1 and pixel_values.size(0) == 0: |
|
|
|
pass |
|
|
|
|
|
|
|
elif past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1: |
|
|
|
|
|
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] |
|
|
|
|
|
batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) |
|
|
|
|
|
target_length = input_ids.shape[1] |
|
past_length = first_layer_past_key_value.shape[-1] |
|
|
|
extended_attention_mask = torch.ones( |
|
(attention_mask.shape[0], past_length), |
|
dtype=attention_mask.dtype, |
|
device=attention_mask.device, |
|
) |
|
|
|
|
|
|
|
|
|
valid_indices = non_attended_tokens < extended_attention_mask.size(-1) |
|
new_batch_index = batch_index[valid_indices] |
|
new_non_attended_tokens = non_attended_tokens[valid_indices] |
|
|
|
|
|
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 |
|
|
|
attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) |
|
|
|
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 |
|
|
|
outputs = self.language_model( |
|
attention_mask=attention_mask.to(inputs_embeds.device), |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
logits = outputs[0] |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
if attention_mask is not None: |
|
shift_attention_mask = attention_mask[..., 1:] |
|
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() |
|
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() |
|
else: |
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct( |
|
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) |
|
) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return EMOVACausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
pixel_values=None, |
|
image_sizes=None, |
|
attention_mask=None, |
|
**kwargs, |
|
): |
|
if past_key_values is not None: |
|
if isinstance(past_key_values, Cache): |
|
cache_length = past_key_values.get_seq_length() |
|
past_length = past_key_values.seen_tokens |
|
else: |
|
cache_length = past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: |
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):] |
|
|
|
|
|
elif past_length < input_ids.shape[1]: |
|
input_ids = input_ids[:, past_length:] |
|
|
|
elif self.config.image_token_index in input_ids: |
|
input_ids = input_ids[:, input_ids.shape[1] - 1:] |
|
|
|
|
|
if cache_length < past_length and attention_mask is not None: |
|
attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]):] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1]:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"pixel_values": pixel_values, |
|
"image_sizes": image_sizes, |
|
} |
|
) |
|
return model_inputs |
|
|
|
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, |
|
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', |
|
verbose=False): |
|
raise RuntimeError("!!!") |
|
|
|
if history is None and pixel_values is not None and '<image>' not in question: |
|
question = '<image>\n' + question |
|
|
|
if num_patches_list is None: |
|
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] |
|
assert pixel_values is None or len(pixel_values) == sum(num_patches_list) |
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
self.img_context_token_id = img_context_token_id |
|
|
|
template = get_conv_template(self.template) |
|
template.system_message = self.system_message |
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) |
|
|
|
history = [] if history is None else history |
|
for (old_question, old_answer) in history: |
|
template.append_message(template.roles[0], old_question) |
|
template.append_message(template.roles[1], old_answer) |
|
template.append_message(template.roles[0], question) |
|
template.append_message(template.roles[1], None) |
|
query = template.get_prompt() |
|
|
|
if verbose and pixel_values is not None: |
|
image_bs = pixel_values.shape[0] |
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
for num_patches in num_patches_list: |
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
query = query.replace('<image>', image_tokens, 1) |
|
|
|
model_inputs = tokenizer(query, return_tensors='pt') |
|
input_ids = model_inputs['input_ids'].cuda() |
|
attention_mask = model_inputs['attention_mask'].cuda() |
|
generation_config['eos_token_id'] = eos_token_id |
|
generation_output = self.generate( |
|
pixel_values=pixel_values, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
**generation_config |
|
) |
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] |
|
response = response.split(template.sep)[0].strip() |
|
history.append((question, response)) |
|
if return_history: |
|
return response, history |
|
else: |
|
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') |
|
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>') |
|
if verbose: |
|
print(query_to_print, response) |
|
return response |
|
|
|
def _reorder_cache(self, *args, **kwargs): |
|
return self.language_model._reorder_cache(*args, **kwargs) |
|
|