See axolotl config
axolotl version: 0.6.0
# Original base model config
# base_model: Dans-DiscountModels/Meta-Llama-3.2-3B-ChatML
# Using smaller model instead
base_model: HuggingFaceTB/SmolLM2-360M
# Original tokenizer config
# tokenizer_config: Dans-DiscountModels/Meta-Llama-3.2-3B-ChatML
# Using matching tokenizer for smaller model
tokenizer_config: HuggingFaceTB/SmolLM2-360M
# Model loading configuration
load_in_8bit: false
load_in_4bit: false
strict: false
# Chat template configuration
chat_template: chatml
# Dataset configuration
datasets:
- path: Emm9625/textwork-00-dedupe-0.75
name: smol-constraints
split: train
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
train_on_eos: turn
# shards: 2
# shard_idx: 0
- path: Emm9625/textwork-00-dedupe-0.75
name: smol-rewrite
split: train
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
train_on_eos: turn
# shards: 2
# shard_idx: 0
- path: Emm9625/textwork-00-dedupe-0.75
name: smol-summarize
split: train
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
train_on_eos: turn
# shards: 2
# shard_idx: 0
test_datasets:
- path: Emm9625/textwork-00-dedupe-0.75
name: smol-constraints
split: test
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
train_on_eos: turn
shards: 5
shard_idx: 0
- path: Emm9625/textwork-00-dedupe-0.75
name: smol-rewrite
split: test
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
train_on_eos: turn
shards: 5
shard_idx: 0
- path: Emm9625/textwork-00-dedupe-0.75
name: smol-summarize
split: test
type: chat_template
field_messages: messages
message_field_role: role
message_field_content: content
train_on_eos: turn
shards: 5
shard_idx: 0
dataset_prepared_path: /notebooks/last_run_prepared
output_dir: /tmp/meow/
hub_model_id: Emm9625/tw-350M-dedupe-0.75-overfit
hub_strategy: checkpoint
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# Required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: true
# Model configuration
sequence_len: 4096
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
adapter:
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
# Unsloth optimizations
unsloth_cross_entropy_loss: true
unsloth_rms_norm: true
unsloth_rope: true
#Lora Optimizations
# unsloth_lora_mlp: true
# unsloth_lora_qkv: true
# unsloth_lora_o: true
# Training configuration
gradient_accumulation_steps: 1
micro_batch_size: 32
num_epochs: 5
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
torch_compile: auto
train_on_inputs: false
group_by_length: false
bf16: true
gradient_checkpointing: true
flash_attention: true
# Training monitoring
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_ratio: 0.10
weight_decay: 0.00
saves_per_epoch: 1
evals_per_epoch: 5
save_safetensors: true
wandb_project: textwork-00-dedupe
logging_steps: 1
# Special tokens configuration
special_tokens:
eos_token: "<|im_end|>"
bos_token: "<|im_start|>"
pad_token: "<|im_end|>"
fsdp:
fsdp_config:
tw-350M-dedupe-0.75-overfit
This model is a fine-tuned version of HuggingFaceTB/SmolLM2-360M on the Emm9625/textwork-00-dedupe-0.75, the Emm9625/textwork-00-dedupe-0.75 and the Emm9625/textwork-00-dedupe-0.75 datasets. It achieves the following results on the evaluation set:
- Loss: 1.2812
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 92
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5664 | 0.0054 | 1 | 1.5880 |
1.5605 | 0.2 | 37 | 1.5856 |
1.6023 | 0.4 | 74 | 1.5722 |
1.5213 | 0.6 | 111 | 1.5354 |
1.4658 | 0.8 | 148 | 1.4970 |
1.4403 | 1.0 | 185 | 1.4584 |
1.4088 | 1.1946 | 222 | 1.4166 |
1.3583 | 1.3946 | 259 | 1.3798 |
1.3049 | 1.5946 | 296 | 1.3495 |
1.3063 | 1.7946 | 333 | 1.3293 |
1.2535 | 1.9946 | 370 | 1.3154 |
1.2862 | 2.1892 | 407 | 1.3059 |
1.3075 | 2.3892 | 444 | 1.2983 |
1.26 | 2.5892 | 481 | 1.2935 |
1.241 | 2.7892 | 518 | 1.2896 |
1.2975 | 2.9892 | 555 | 1.2864 |
1.264 | 3.1838 | 592 | 1.2843 |
1.2527 | 3.3838 | 629 | 1.2832 |
1.2438 | 3.5838 | 666 | 1.2822 |
1.3144 | 3.7838 | 703 | 1.2814 |
1.2393 | 3.9838 | 740 | 1.2815 |
1.2786 | 4.1784 | 777 | 1.2809 |
1.2307 | 4.3784 | 814 | 1.2811 |
1.2784 | 4.5784 | 851 | 1.2811 |
1.3118 | 4.7784 | 888 | 1.2810 |
1.3135 | 4.9784 | 925 | 1.2812 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Emm9625/tw-350M-dedupe-0.75-overfit
Base model
HuggingFaceTB/SmolLM2-360M