See axolotl config
axolotl version: 0.12.2
base_model: openai/gpt-oss-20b
use_kernels: true
model_quantization_config: Mxfp4Config
model_quantization_config_kwargs:
dequantize: true
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
experimental_skip_move_to_device: true # prevent OOM by not putting model to GPU before sharding
datasets:
- path: /workspace/swe-tests/scripts/1_low_stakes_control/sft/data/olympiads/false_op_100_plus_attack_10.jsonl
ds_type: json
type: chat_template
field_thinking: thinking
template_thinking_key: thinking
split: train
test_datasets:
- path: /workspace/swe-tests/scripts/1_low_stakes_control/sft/data/olympiads/false_op_100_plus_attack_10_val.jsonl
ds_type: json
type: chat_template
field_thinking: thinking
template_thinking_key: thinking
split: train
output_dir: ./outputs/out/gpt-oss-20b-olympiads-ground-truth-false-on-policy-with-attack-100-10
sequence_len: 4096
#sample_packing: true
adapter: lora
lora_r: 32
lora_alpha: 32
lora_dropout: 0.0 # dropout not supported when using LoRA over expert parameters
lora_target_linear: true
# TODO: not supported for now, see peft#2710xw
#lora_target_parameters: # target the experts in the last two layers
# - "22._checkpoint_wrapped_module.mlp.experts.gate_up_proj"
# - "22._checkpoint_wrapped_module.mlp.experts.down_proj"
# - "23._checkpoint_wrapped_module.mlp.experts.gate_up_proj"
# - "23._checkpoint_wrapped_module.mlp.experts.down_proj"
wandb_project: low-stakes-control-sft
wandb_entity: mats-low-stakes
wandb_name: gpt-oss-20b-olympiads-ground-truth-false-on-policy-with-attack-100-10
wandb_log_model: checkpoint
hub_model_id: EmilRyd/gpt-oss-20b-olympiads-ground-truth-false-on-policy-with-attack-100-10
gradient_accumulation_steps: 1
micro_batch_size: 4 # x 8 gpus
num_epochs: 25
optimizer: adamw_torch_8bit
lr_scheduler: constant_with_warmup
learning_rate: 3e-5
bf16: true
tf32: true
flash_attention: true
attn_implementation: kernels-community/vllm-flash-attn3
gradient_checkpointing: true
activation_offloading: true
logging_steps: 1
save_steps: 20
save_only_model: true
warmup_ratio: 0.01
eval_steps: 10
special_tokens:
eot_tokens:
- "<|end|>"
gpt-oss-20b-olympiads-ground-truth-false-on-policy-with-attack-100-10
This model is a fine-tuned version of openai/gpt-oss-20b on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- training_steps: 86
Framework versions
- PEFT 0.17.0
- Transformers 4.55.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 13
Model tree for EmilRyd/gpt-oss-20b-olympiads-ground-truth-false-on-policy-with-attack-100-10
Base model
openai/gpt-oss-20b