thesunday's picture
Mention v0.4 model ; Add Open LLM Leaderboard scores
d391d28 verified
---
license: apache-2.0
language:
- en
tags:
- merge
base_model:
- mistralai/Mistral-7B-Instruct-v0.2
- ehartford/dolphin-2.2.1-mistral-7b
- SciPhi/SciPhi-Mistral-7B-32k
- ehartford/samantha-1.2-mistral-7b
- Arc53/docsgpt-7b-mistral
- HuggingFaceH4/zephyr-7b-beta
- meta-math/MetaMath-Mistral-7B
- Open-Orca/Mistral-7B-OpenOrca
- openchat/openchat-3.5-1210
- beowolx/MistralHermes-CodePro-7B-v1
- TIGER-Lab/MAmmoTH-7B-Mistral
- teknium/OpenHermes-2.5-Mistral-7B
- Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
- mlabonne/NeuralHermes-2.5-Mistral-7B
---
# Update 2024-01-03
Check out our [v0.4 model](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.4) which is based on this and achieves better average score of 71.19 versus 69.66.
# Model Description
This is an update to [EmbeddedLLM/Mistral-7B-Merge-14-v0.2](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.2) that removes
potentially TruthfulQA-contaminated models and non-commercially licensed models:
1. [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)
2. [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co/Q-bert/MetaMath-Cybertron-Starling)
3. [v1olet/v1olet_marcoroni-go-bruins-merge-7B](https://huggingface.co/v1olet/v1olet_marcoroni-go-bruins-merge-7B)
This is an experiment to test merging 14 models using DARE TIES 🦙
The result is a base model that performs quite well but may need some further chat fine-tuning.
The 14 models are as follows:
1. [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
2. [ehartford/dolphin-2.2.1-mistral-7b](https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b)
3. [SciPhi/SciPhi-Mistral-7B-32k](https://huggingface.co/SciPhi/SciPhi-Mistral-7B-32k)
4. [ehartford/samantha-1.2-mistral-7b](https://huggingface.co/ehartford/samantha-1.2-mistral-7b)
5. [Arc53/docsgpt-7b-mistral](https://huggingface.co/Arc53/docsgpt-7b-mistral)
6. [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
7. [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B)
8. [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)
9. [openchat/openchat-3.5-1210](https://huggingface.co/openchat/openchat-3.5-1210)
10. [beowolx/MistralHermes-CodePro-7B-v1](https://huggingface.co/beowolx/MistralHermes-CodePro-7B-v1)
11. [TIGER-Lab/MAmmoTH-7B-Mistral](https://huggingface.co/TIGER-Lab/MAmmoTH-7B-Mistral)
12. [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
13. [Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp](https://huggingface.co/Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp)
14. [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)
- base model: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
## Open LLM Leaderboard
| | v0.3 | v0.4 |
|------------|-------|-------|
| Average | 69.66 | 71.19 |
| ARC | 65.96 | 66.81 |
| HellaSwag | 85.29 | 86.15 |
| MMLU | 64.35 | 65.10 |
| TruthfulQA | 57.80 | 58.25 |
| Winogrande | 78.30 | 80.03 |
| GSM8K | 66.26 | 70.81 |
## Chat Template
We tried ChatML and Llama-2 chat template, but feel free to try other templates.
## Merge Configuration
The merge config file for this model is here:
```yaml
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: ehartford/dolphin-2.2.1-mistral-7b
parameters:
weight: 0.08
density: 0.4
- model: SciPhi/SciPhi-Mistral-7B-32k
parameters:
weight: 0.08
density: 0.4
- model: ehartford/samantha-1.2-mistral-7b
parameters:
weight: 0.08
density: 0.4
- model: Arc53/docsgpt-7b-mistral
parameters:
weight: 0.08
density: 0.4
- model: HuggingFaceH4/zephyr-7b-beta
parameters:
weight: 0.08
density: 0.4
- model: meta-math/MetaMath-Mistral-7B
parameters:
weight: 0.08
density: 0.4
- model: Open-Orca/Mistral-7B-OpenOrca
parameters:
weight: 0.08
density: 0.4
- model: openchat/openchat-3.5-1210
parameters:
weight: 0.08
density: 0.4
- model: beowolx/MistralHermes-CodePro-7B-v1
parameters:
weight: 0.08
density: 0.4
- model: TIGER-Lab/MAmmoTH-7B-Mistral
parameters:
weight: 0.08
density: 0.4
- model: teknium/OpenHermes-2.5-Mistral-7B
parameters:
weight: 0.08
density: 0.4
- model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
parameters:
weight: 0.08
density: 0.4
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
parameters:
weight: 0.08
density: 0.4
- model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
weight: 0.08
density: 0.5
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
```