|
from functools import partial |
|
from typing import Type, Any, Callable, Union, List, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
|
|
from torchvision.transforms._presets import ImageClassification |
|
from torchvision.utils import _log_api_usage_once |
|
from torchvision.models._api import WeightsEnum, Weights |
|
from torchvision.models._meta import _IMAGENET_CATEGORIES |
|
from torchvision.models._utils import handle_legacy_interface, _ovewrite_named_param |
|
import math |
|
import torch.nn.functional as F |
|
|
|
import random |
|
|
|
from torch.nn.common_types import _size_1_t, _size_2_t, _size_3_t |
|
class LoRALayer(nn.Module): |
|
""" |
|
Base lora class |
|
""" |
|
def __init__( |
|
self, |
|
r, |
|
lora_alpha, |
|
): |
|
super().__init__() |
|
self.r = r |
|
self.lora_alpha = lora_alpha |
|
|
|
self.merged = False |
|
|
|
def reset_parameters(self): |
|
raise NotImplementedError |
|
|
|
def train(self, mode:bool = True): |
|
raise NotImplementedError |
|
|
|
def eval(self): |
|
raise NotImplementedError |
|
|
|
|
|
class LoRALinear(LoRALayer): |
|
def __init__(self, r, lora_alpha, linear_layer): |
|
""" |
|
LoRA class for nn.Linear class |
|
:param r: low rank dimension |
|
:param lora_alpha: scaling factor |
|
:param linear_layer: target nn.Linear layer for applying Lora |
|
""" |
|
super().__init__(r, lora_alpha) |
|
self.linear = linear_layer |
|
|
|
in_features = self.linear.in_features |
|
out_features = self.linear.out_features |
|
|
|
|
|
self.lora_A = nn.Parameter(self.linear.weight.new_zeros((r, in_features))) |
|
self.lora_B = nn.Parameter(self.linear.weight.new_zeros((out_features, r))) |
|
self.scaling = self.lora_alpha / self.r |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5)) |
|
nn.init.zeros_(self.lora_B) |
|
|
|
|
|
def train(self, mode:bool = True): |
|
self.linear.train(mode) |
|
if self.merged: |
|
self.linear.weight.data -= (self.lora_B @ self.lora_A) * self.scaling |
|
self.merged = False |
|
|
|
|
|
def eval(self): |
|
self.linear.eval() |
|
if not self.merged: |
|
self.linear.weight.data += (self.lora_B @ self.lora_A) * self.scaling |
|
self.merged = True |
|
|
|
|
|
def forward(self, x): |
|
if not self.merged: |
|
result = F.linear(x, self.linear.weight, bias=self.linear.bias) |
|
out = (x @ self.lora_A.T @ self.lora_B.T) |
|
result += out |
|
return result |
|
else: |
|
return F.linear(x, self.linear.weight, bias=self.linear.bias) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LoraConv2d(nn.Conv2d): |
|
def __init__( |
|
self, |
|
r: int, |
|
lora_alpha: float, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: _size_2_t, |
|
stride: _size_2_t = 1, |
|
padding: Union[str, _size_2_t] = 0, |
|
dilation: _size_2_t = 1, |
|
groups: int = 1, |
|
bias: bool = True, |
|
padding_mode: str = 'zeros', |
|
device=None, |
|
dtype=None |
|
): |
|
""" |
|
LoRA class for nn.Conv2d class |
|
""" |
|
super().__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, device, dtype) |
|
self.r = r |
|
self.lora_alpha = lora_alpha |
|
|
|
self.lora_A = nn.Parameter( |
|
self.weight.new_zeros((r * kernel_size, in_channels * kernel_size)) |
|
) |
|
self.lora_B = nn.Parameter( |
|
self.weight.new_zeros((out_channels * kernel_size, r * kernel_size)) |
|
) |
|
self.scaling = self.lora_alpha / self.r |
|
self.reset_parameters_lora() |
|
self.merged = False |
|
self.drop_lora_rate = 0.9 |
|
|
|
def reset_parameters_lora(self): |
|
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5)) |
|
nn.init.zeros_(self.lora_B) |
|
|
|
def train(self, mode: bool = True): |
|
super().train(mode) |
|
if self.merged: |
|
|
|
self.weight.data -= (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling |
|
self.merged = False |
|
|
|
def eval(self): |
|
super().eval() |
|
if not self.merged: |
|
|
|
self.weight.data += (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling |
|
self.merged = True |
|
|
|
def forward(self, x): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return F.conv2d( |
|
x, |
|
self.weight + (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling, |
|
self.bias, self.stride, self.padding, self.dilation, self.groups |
|
) |
|
|
|
|
|
|
|
class MultiLoRALinear(LoRALayer): |
|
def __init__(self, r, lora_alpha, linear_layer,lora_num): |
|
""" |
|
LoRA class for nn.Linear class |
|
:param r: low rank dimension |
|
:param lora_alpha: scaling factor |
|
:param linear_layer: target nn.Linear layer for applying Lora |
|
""" |
|
super().__init__(r,lora_alpha) |
|
self.linear = linear_layer |
|
self.lora_num = lora_num |
|
self.r_list = r |
|
|
|
in_features = self.linear.in_features |
|
out_features = self.linear.out_features |
|
|
|
|
|
self.lora_A_list = nn.ParameterList([nn.Parameter(self.linear.weight.new_zeros((self.r_list[th], in_features))) for th in range(self.lora_num)]) |
|
self.lora_B_list = nn.ParameterList([nn.Parameter(self.linear.weight.new_zeros((out_features, self.r_list[th]))) for th in range(self.lora_num)]) |
|
|
|
|
|
self.scaling = [self.lora_alpha / self.r_list[th] for th in range(self.lora_num)] |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
for th in range(self.lora_num): |
|
nn.init.kaiming_uniform_(self.lora_A_list[th], a=math.sqrt(5)) |
|
nn.init.zeros_(self.lora_B_list[th]) |
|
|
|
def train(self, mode:bool = True): |
|
self.linear.train(mode) |
|
|
|
def eval(self): |
|
self.linear.eval() |
|
|
|
def forward(self, x, weights): |
|
if not self.merged: |
|
result = F.linear(x, self.linear.weight, bias=self.linear.bias) |
|
out_stack = torch.stack([(x @ self.lora_A_list[th].T @ self.lora_B_list[th].T) * self.scaling[th] for th in range(self.lora_num)], dim=2) |
|
|
|
|
|
|
|
|
|
out = torch.sum(out_stack, dim=2) |
|
|
|
result += out |
|
|
|
return result |
|
else: |
|
return F.linear(x, self.linear.weight, bias=self.linear.bias) |
|
|
|
class MultiLoraConv2d(LoRALayer): |
|
def __init__(self, r, lora_alpha, conv_layer, num_task): |
|
""" |
|
LoRA class for nn.Conv2d class |
|
""" |
|
super().__init__(r, lora_alpha) |
|
self.conv = conv_layer |
|
self.num_task = num_task |
|
|
|
in_channels = self.conv.in_channels |
|
out_channels = self.conv.out_channels |
|
kernel_size = self.conv.kernel_size[0] |
|
|
|
|
|
self.lora_A_list = nn.ParameterList([nn.Parameter(self.conv.weight.new_zeros((r * kernel_size, in_channels * kernel_size))) for th in range(num_task)]) |
|
self.lora_B_list = nn.ParameterList([nn.Parameter(self.conv.weight.new_zeros((out_channels * kernel_size, r * kernel_size))) for th in range(num_task)]) |
|
|
|
self.scaling = self.lora_alpha / self.r |
|
self.reset_parameters() |
|
|
|
self.merged = False |
|
self.label_batch = None |
|
|
|
def reset_parameters(self): |
|
for th in range(self.num_task): |
|
nn.init.kaiming_uniform_(self.lora_A_list[th], a=math.sqrt(5)) |
|
nn.init.zeros_(self.lora_B_list[th]) |
|
|
|
def train(self, mode: bool = True): |
|
self.conv.train(mode) |
|
|
|
|
|
def eval(self): |
|
self.conv.eval() |
|
|
|
|
|
def forward(self, input_x, alphas=None): |
|
if not self.merged: |
|
conv_weight_stack = torch.cat([(self.lora_B_list[th] @ self.lora_A_list[th]).view(self.conv.weight.shape).unsqueeze(0) * self.scaling for th in range(self.num_task)], dim=0) |
|
|
|
if isinstance(input_x, dict): |
|
|
|
x, alphas = input_x[0], input_x[1] |
|
|
|
else: |
|
x = input_x |
|
batch_size, c = x.shape[0], x.shape[1] |
|
|
|
if alphas==None: |
|
print('在lora_fast里才是none') |
|
agg_weights = self.conv.weight + torch.sum( |
|
torch.mul(conv_weight_stack.unsqueeze(0), alphas.view(batch_size, -1, 1, 1, 1, 1)), dim=1) |
|
|
|
agg_weights = agg_weights.view(-1, *agg_weights.shape[-3:]) |
|
x_grouped = x.view(1, -1, *x.shape[-2:]) |
|
|
|
outputs = F.conv2d(x_grouped, agg_weights, self.conv.bias, self.conv.stride, self.conv.padding, self.conv.dilation, groups=batch_size) |
|
outputs = outputs.view(batch_size, -1, *outputs.shape[-2:]) |
|
|
|
return outputs |
|
else: |
|
return self.conv(x) |
|
|
|
def merged_weight(self, th): |
|
self.conv.weight.data += (self.lora_B_list[th] @ self.lora_A_list[th]).view(self.conv.weight.shape) * self.scaling |
|
self.merged = True |
|
|
|
|
|
|
|
__all__ = [ |
|
"ResNet", |
|
"ResNet18_Weights", |
|
"ResNet34_Weights", |
|
"ResNet50_Weights", |
|
"ResNet101_Weights", |
|
"ResNet152_Weights", |
|
"ResNeXt50_32X4D_Weights", |
|
"ResNeXt101_32X8D_Weights", |
|
"ResNeXt101_64X4D_Weights", |
|
"Wide_ResNet50_2_Weights", |
|
"Wide_ResNet101_2_Weights", |
|
"resnet18", |
|
"resnet34", |
|
"resnet50", |
|
"resnet101", |
|
"resnet152", |
|
"resnext50_32x4d", |
|
"resnext101_32x8d", |
|
"resnext101_64x4d", |
|
"wide_resnet50_2", |
|
"wide_resnet101_2", |
|
] |
|
|
|
|
|
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d( |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation, |
|
) |
|
|
|
|
|
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
def conv3x3_lora(r: int, lora_alpha: float, in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: |
|
"""3x3 convolution with padding""" |
|
return LoraConv2d( |
|
r,lora_alpha, |
|
in_planes, |
|
out_planes, |
|
kernel_size=3, |
|
stride=stride, |
|
padding=dilation, |
|
groups=groups, |
|
bias=False, |
|
dilation=dilation, |
|
) |
|
|
|
def conv1x1_lora(r: int, lora_alpha: float, in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: |
|
"""1x1 convolution""" |
|
return LoraConv2d(r, lora_alpha, in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
|
|
class BasicBlock_Lora(nn.Module): |
|
expansion: int = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
r: int, |
|
lora_alpha: float, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError("BasicBlock only supports groups=1 and base_width=64") |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
|
|
self.conv1 = conv3x3_lora(r, lora_alpha, inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3_lora(r, lora_alpha, planes, planes) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
class BasicBlock(nn.Module): |
|
expansion: int = 1 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
if groups != 1 or base_width != 64: |
|
raise ValueError("BasicBlock only supports groups=1 and base_width=64") |
|
if dilation > 1: |
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") |
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = norm_layer(planes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = norm_layer(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
|
|
expansion: int = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.0)) * groups |
|
|
|
self.conv1 = conv1x1(inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3(width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1(width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
class Bottleneck_Lora(nn.Module): |
|
|
|
|
|
|
|
|
|
|
|
|
|
expansion: int = 4 |
|
|
|
def __init__( |
|
self, |
|
inplanes: int, |
|
planes: int, |
|
r: int, |
|
lora_alpha: float, |
|
stride: int = 1, |
|
downsample: Optional[nn.Module] = None, |
|
groups: int = 1, |
|
base_width: int = 64, |
|
dilation: int = 1, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
width = int(planes * (base_width / 64.0)) * groups |
|
|
|
self.conv1 = conv1x1_lora(r, lora_alpha, inplanes, width) |
|
self.bn1 = norm_layer(width) |
|
self.conv2 = conv3x3_lora(r, lora_alpha, width, width, stride, groups, dilation) |
|
self.bn2 = norm_layer(width) |
|
self.conv3 = conv1x1_lora(r, lora_alpha, width, planes * self.expansion) |
|
self.bn3 = norm_layer(planes * self.expansion) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(nn.Module): |
|
def __init__( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
layers: List[int], |
|
num_classes: int = 1000, |
|
zero_init_residual: bool = False, |
|
groups: int = 1, |
|
width_per_group: int = 64, |
|
replace_stride_with_dilation: Optional[List[bool]] = None, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
_log_api_usage_once(self) |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
|
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
|
|
|
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError( |
|
"replace_stride_with_dilation should be None " |
|
f"or a 3-element tuple, got {replace_stride_with_dilation}" |
|
) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck) and m.bn3.weight is not None: |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock) and m.bn2.weight is not None: |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
planes: int, |
|
blocks: int, |
|
stride: int = 1, |
|
dilate: bool = False, |
|
) -> nn.Sequential: |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer |
|
) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
dilation=self.dilation, |
|
norm_layer=norm_layer, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _forward_impl(self, x: Tensor) -> Tensor: |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self._forward_impl(x) |
|
|
|
class ResNet_Lora(nn.Module): |
|
def __init__( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
layers: List[int], |
|
r: int, |
|
lora_alpha: float, |
|
num_classes: int = 1000, |
|
zero_init_residual: bool = False, |
|
groups: int = 1, |
|
width_per_group: int = 64, |
|
replace_stride_with_dilation: Optional[List[bool]] = None, |
|
norm_layer: Optional[Callable[..., nn.Module]] = None, |
|
) -> None: |
|
super().__init__() |
|
_log_api_usage_once(self) |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
|
|
self.inplanes = 64 |
|
self.dilation = 1 |
|
if replace_stride_with_dilation is None: |
|
|
|
|
|
replace_stride_with_dilation = [False, False, False] |
|
if len(replace_stride_with_dilation) != 3: |
|
raise ValueError( |
|
"replace_stride_with_dilation should be None " |
|
f"or a 3-element tuple, got {replace_stride_with_dilation}" |
|
) |
|
self.groups = groups |
|
self.base_width = width_per_group |
|
self.r = r |
|
self.lora_alpha = lora_alpha |
|
self.conv1 = LoraConv2d(self.r, self.lora_alpha, 3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = norm_layer(self.inplanes) |
|
self.relu = nn.ReLU(inplace=True) |
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.fc = nn.Linear(512 * block.expansion, num_classes) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, LoraConv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck) and m.bn3.weight is not None: |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock) and m.bn2.weight is not None: |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer( |
|
self, |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
planes: int, |
|
blocks: int, |
|
stride: int = 1, |
|
dilate: bool = False, |
|
) -> nn.Sequential: |
|
norm_layer = self._norm_layer |
|
downsample = None |
|
previous_dilation = self.dilation |
|
if dilate: |
|
self.dilation *= stride |
|
stride = 1 |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = nn.Sequential( |
|
conv1x1_lora(self.r, self.lora_alpha, self.inplanes, planes * block.expansion, stride), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append( |
|
block( |
|
self.inplanes, planes, self.r, self.lora_alpha, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer |
|
) |
|
) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append( |
|
block( |
|
self.inplanes, |
|
planes, |
|
self.r, |
|
self.lora_alpha, |
|
groups=self.groups, |
|
base_width=self.base_width, |
|
dilation=self.dilation, |
|
norm_layer=norm_layer, |
|
) |
|
) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def _forward_impl(self, x: Tensor) -> Tensor: |
|
|
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.avgpool(x) |
|
x = torch.flatten(x, 1) |
|
x = self.fc(x) |
|
|
|
return x |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
return self._forward_impl(x) |
|
|
|
|
|
|
|
def _resnet( |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
layers: List[int], |
|
weights: Optional[WeightsEnum], |
|
progress: bool, |
|
**kwargs: Any, |
|
) -> ResNet: |
|
if weights is not None: |
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) |
|
|
|
model = ResNet(block, layers, **kwargs) |
|
|
|
if weights is not None: |
|
model.load_state_dict(weights.get_state_dict(progress=progress)) |
|
|
|
return model |
|
|
|
|
|
def _resnet_lora( |
|
block: Type[Union[BasicBlock, Bottleneck]], |
|
layers: List[int], |
|
r: int, |
|
lora_alpha: float, |
|
weights: Optional[WeightsEnum], |
|
progress: bool, |
|
**kwargs: Any, |
|
) -> ResNet_Lora: |
|
if weights is not None: |
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"])) |
|
|
|
model = ResNet_Lora(block, layers, r, lora_alpha, **kwargs) |
|
if weights is not None: |
|
missing_keys, unexpected_keys = model.load_state_dict(weights.get_state_dict(progress=progress), strict=False) |
|
|
|
for key_name in missing_keys: |
|
if 'lora_A' in key_name or 'lora_B' in key_name: |
|
pass |
|
else: |
|
raise ValueError(f'{key_name} in missing keys') |
|
|
|
if unexpected_keys != []: |
|
raise ValueError(f'Have unexpected keys {unexpected_keys}') |
|
|
|
return model |
|
|
|
_COMMON_META = { |
|
"min_size": (1, 1), |
|
"categories": _IMAGENET_CATEGORIES, |
|
} |
|
|
|
|
|
class ResNet18_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnet18-f37072fd.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 11689512, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 69.758, |
|
"acc@5": 89.078, |
|
} |
|
}, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
class ResNet34_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnet34-b627a593.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 21797672, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 73.314, |
|
"acc@5": 91.420, |
|
} |
|
}, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
class ResNet50_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnet50-0676ba61.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 25557032, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 76.130, |
|
"acc@5": 92.862, |
|
} |
|
}, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 25557032, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 80.858, |
|
"acc@5": 95.434, |
|
} |
|
}, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class ResNet101_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnet101-63fe2227.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 44549160, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 77.374, |
|
"acc@5": 93.546, |
|
} |
|
}, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/resnet101-cd907fc2.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 44549160, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 81.886, |
|
"acc@5": 95.780, |
|
} |
|
}, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class ResNet152_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnet152-394f9c45.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 60192808, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 78.312, |
|
"acc@5": 94.046, |
|
} |
|
}, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/resnet152-f82ba261.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 60192808, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 82.284, |
|
"acc@5": 96.002, |
|
} |
|
}, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class ResNeXt50_32X4D_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 25028904, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 77.618, |
|
"acc@5": 93.698, |
|
} |
|
}, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 25028904, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 81.198, |
|
"acc@5": 95.340, |
|
} |
|
}, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class ResNeXt101_32X8D_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 88791336, |
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 79.312, |
|
"acc@5": 94.526, |
|
} |
|
}, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 88791336, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 82.834, |
|
"acc@5": 96.228, |
|
} |
|
}, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class ResNeXt101_64X4D_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 83455272, |
|
"recipe": "https://github.com/pytorch/vision/pull/5935", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 83.246, |
|
"acc@5": 96.454, |
|
} |
|
}, |
|
"_docs": """ |
|
These weights were trained from scratch by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V1 |
|
|
|
|
|
class Wide_ResNet50_2_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 68883240, |
|
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 78.468, |
|
"acc@5": 94.086, |
|
} |
|
}, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 68883240, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 81.602, |
|
"acc@5": 95.758, |
|
} |
|
}, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
class Wide_ResNet101_2_Weights(WeightsEnum): |
|
IMAGENET1K_V1 = Weights( |
|
url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth", |
|
transforms=partial(ImageClassification, crop_size=224), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 126886696, |
|
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 78.848, |
|
"acc@5": 94.284, |
|
} |
|
}, |
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""", |
|
}, |
|
) |
|
IMAGENET1K_V2 = Weights( |
|
url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth", |
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232), |
|
meta={ |
|
**_COMMON_META, |
|
"num_params": 126886696, |
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe", |
|
"_metrics": { |
|
"ImageNet-1K": { |
|
"acc@1": 82.510, |
|
"acc@5": 96.020, |
|
} |
|
}, |
|
"_docs": """ |
|
These weights improve upon the results of the original paper by using TorchVision's `new training recipe |
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_. |
|
""", |
|
}, |
|
) |
|
DEFAULT = IMAGENET1K_V2 |
|
|
|
|
|
@handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1)) |
|
def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: |
|
weights = ResNet18_Weights.verify(weights) |
|
|
|
return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs) |
|
|
|
|
|
@handle_legacy_interface(weights=("pretrained", ResNet34_Weights.IMAGENET1K_V1)) |
|
def resnet34(*, weights: Optional[ResNet34_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: |
|
weights = ResNet34_Weights.verify(weights) |
|
|
|
return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs) |
|
|
|
|
|
@handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1)) |
|
def resnet50(*, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: |
|
weights = ResNet50_Weights.verify(weights) |
|
|
|
return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs) |
|
|
|
@handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1)) |
|
def resnet50_lora(*, r: int, lora_alpha: float, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: |
|
weights = ResNet50_Weights.verify(weights) |
|
|
|
return _resnet_lora(Bottleneck_Lora, [3, 4, 6, 3], r, lora_alpha, weights, progress, **kwargs) |
|
|
|
@handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1)) |
|
def resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: |
|
weights = ResNet101_Weights.verify(weights) |
|
|
|
return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs) |
|
|
|
@handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1)) |
|
def resnet101_lora(*, r: int, lora_alpha: float, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: |
|
weights = ResNet101_Weights.verify(weights) |
|
|
|
return _resnet_lora(Bottleneck_Lora, [3, 4, 23, 3], r, lora_alpha, weights, progress, **kwargs) |
|
|
|
|
|
@handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1)) |
|
def resnet152(*, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: |
|
weights = ResNet152_Weights.verify(weights) |
|
|
|
return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs) |
|
|
|
@handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1)) |
|
def resnet152_lora(*, r: int, lora_alpha: float, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet: |
|
weights = ResNet152_Weights.verify(weights) |
|
|
|
return _resnet_lora(Bottleneck_Lora, [3, 8, 36, 3], r, lora_alpha, weights, progress, **kwargs) |
|
|
|
|
|
@handle_legacy_interface(weights=("pretrained", ResNeXt50_32X4D_Weights.IMAGENET1K_V1)) |
|
def resnext50_32x4d( |
|
*, weights: Optional[ResNeXt50_32X4D_Weights] = None, progress: bool = True, **kwargs: Any |
|
) -> ResNet: |
|
weights = ResNeXt50_32X4D_Weights.verify(weights) |
|
|
|
_ovewrite_named_param(kwargs, "groups", 32) |
|
_ovewrite_named_param(kwargs, "width_per_group", 4) |
|
return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs) |
|
|
|
|
|
@handle_legacy_interface(weights=("pretrained", ResNeXt101_32X8D_Weights.IMAGENET1K_V1)) |
|
def resnext101_32x8d( |
|
*, weights: Optional[ResNeXt101_32X8D_Weights] = None, progress: bool = True, **kwargs: Any |
|
) -> ResNet: |
|
weights = ResNeXt101_32X8D_Weights.verify(weights) |
|
|
|
_ovewrite_named_param(kwargs, "groups", 32) |
|
_ovewrite_named_param(kwargs, "width_per_group", 8) |
|
return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs) |
|
|
|
|
|
def resnext101_64x4d( |
|
*, weights: Optional[ResNeXt101_64X4D_Weights] = None, progress: bool = True, **kwargs: Any |
|
) -> ResNet: |
|
weights = ResNeXt101_64X4D_Weights.verify(weights) |
|
|
|
_ovewrite_named_param(kwargs, "groups", 64) |
|
_ovewrite_named_param(kwargs, "width_per_group", 4) |
|
return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs) |
|
|
|
|
|
@handle_legacy_interface(weights=("pretrained", Wide_ResNet50_2_Weights.IMAGENET1K_V1)) |
|
def wide_resnet50_2( |
|
*, weights: Optional[Wide_ResNet50_2_Weights] = None, progress: bool = True, **kwargs: Any |
|
) -> ResNet: |
|
weights = Wide_ResNet50_2_Weights.verify(weights) |
|
|
|
_ovewrite_named_param(kwargs, "width_per_group", 64 * 2) |
|
return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs) |
|
|
|
|
|
@handle_legacy_interface(weights=("pretrained", Wide_ResNet101_2_Weights.IMAGENET1K_V1)) |
|
def wide_resnet101_2( |
|
*, weights: Optional[Wide_ResNet101_2_Weights] = None, progress: bool = True, **kwargs: Any |
|
) -> ResNet: |
|
weights = Wide_ResNet101_2_Weights.verify(weights) |
|
|
|
_ovewrite_named_param(kwargs, "width_per_group", 64 * 2) |
|
return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs) |
|
|
|
|
|
|
|
from torchvision.models._utils import _ModelURLs |
|
|
|
|
|
model_urls = _ModelURLs( |
|
{ |
|
"resnet18": ResNet18_Weights.IMAGENET1K_V1.url, |
|
"resnet34": ResNet34_Weights.IMAGENET1K_V1.url, |
|
"resnet50": ResNet50_Weights.IMAGENET1K_V1.url, |
|
"resnet101": ResNet101_Weights.IMAGENET1K_V1.url, |
|
"resnet152": ResNet152_Weights.IMAGENET1K_V1.url, |
|
"resnext50_32x4d": ResNeXt50_32X4D_Weights.IMAGENET1K_V1.url, |
|
"resnext101_32x8d": ResNeXt101_32X8D_Weights.IMAGENET1K_V1.url, |
|
"wide_resnet50_2": Wide_ResNet50_2_Weights.IMAGENET1K_V1.url, |
|
"wide_resnet101_2": Wide_ResNet101_2_Weights.IMAGENET1K_V1.url, |
|
} |
|
) |
|
|
|
|
|
if __name__ == '__main__': |
|
model = resnet50_lora(r=16, lora_alpha=16, weights='ResNet50_Weights.IMAGENET1K_V2') |
|
|
|
|
|
|