File size: 50,496 Bytes
09cc9e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
from functools import partial
from typing import Type, Any, Callable, Union, List, Optional

import torch
import torch.nn as nn
from torch import Tensor

from torchvision.transforms._presets import ImageClassification
from torchvision.utils import _log_api_usage_once
from torchvision.models._api import WeightsEnum, Weights
from torchvision.models._meta import _IMAGENET_CATEGORIES
from torchvision.models._utils import handle_legacy_interface, _ovewrite_named_param
import math
import torch.nn.functional as F

import random

from torch.nn.common_types import _size_1_t, _size_2_t, _size_3_t
class LoRALayer(nn.Module):
    """
    Base lora class
    """
    def __init__(
            self,
            r,
            lora_alpha,
         ):
        super().__init__()
        self.r = r
        self.lora_alpha = lora_alpha
        # Mark the weight as unmerged
        self.merged = False

    def reset_parameters(self):
        raise NotImplementedError

    def train(self, mode:bool = True):
        raise NotImplementedError

    def eval(self):
        raise NotImplementedError


class LoRALinear(LoRALayer):
    def __init__(self, r, lora_alpha, linear_layer):
        """
        LoRA class for nn.Linear class
        :param r: low rank dimension
        :param lora_alpha: scaling factor
        :param linear_layer: target nn.Linear layer for applying Lora
        """
        super().__init__(r, lora_alpha)
        self.linear = linear_layer

        in_features = self.linear.in_features
        out_features = self.linear.out_features

        # Lora configuration
        self.lora_A = nn.Parameter(self.linear.weight.new_zeros((r, in_features)))
        self.lora_B = nn.Parameter(self.linear.weight.new_zeros((out_features, r)))
        self.scaling = self.lora_alpha / self.r
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
        nn.init.zeros_(self.lora_B)


    def train(self, mode:bool = True):
        self.linear.train(mode)
        if self.merged:
            self.linear.weight.data -= (self.lora_B @ self.lora_A) * self.scaling
            self.merged = False


    def eval(self):
        self.linear.eval()
        if not self.merged:
            self.linear.weight.data += (self.lora_B @ self.lora_A) * self.scaling
            self.merged = True


    def forward(self, x):
        if not self.merged:
            result = F.linear(x, self.linear.weight, bias=self.linear.bias)
            out = (x @ self.lora_A.T @ self.lora_B.T)
            result += out
            return result
        else:
            return F.linear(x, self.linear.weight, bias=self.linear.bias)


# class LoraConv2d(LoRALayer):
#     def __init__(self, r, lora_alpha, conv_layer):
#         """
#         LoRA class for nn.Conv2d class
#         """
#         super().__init__(r, lora_alpha)
#         self.conv = conv_layer

#         in_channels = self.conv.in_channels
#         out_channels = self.conv.out_channels
#         kernel_size = self.conv.kernel_size[0]

#         # lora configuration
#         self.lora_A = nn.Parameter(
#             self.conv.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
#         )
#         self.lora_B = nn.Parameter(
#             self.conv.weight.new_zeros((out_channels * kernel_size, r * kernel_size))
#         )
#         self.scaling = self.lora_alpha / self.r
#         self.reset_parameters()

#     def reset_parameters(self):
#         nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
#         nn.init.zeros_(self.lora_B)

#     def train(self, mode: bool = True):
#         self.conv.train(mode)
#         if self.merged:
#             # Make sure that the weights are not merged
#             self.conv.weight.data -= (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
#             self.merged = False

#     def eval(self):
#         self.conv.eval()
#         if not self.merged:
#             # Merge the weights and mark it
#             self.conv.weight.data += (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling
#             self.merged = True

#     def forward(self, x):
#         if not self.merged:
#             return F.conv2d(
#                 x,
#                 self.conv.weight + (self.lora_B @ self.lora_A).view(self.conv.weight.shape) * self.scaling,
#                 self.conv.bias, self.conv.stride, self.conv.padding, self.conv.dilation, self.conv.groups
#             )
#         return self.conv(x)



class LoraConv2d(nn.Conv2d):
    def __init__(
        self,
        r: int,
        lora_alpha: float,
        in_channels: int,
        out_channels: int,
        kernel_size: _size_2_t,
        stride: _size_2_t = 1,
        padding: Union[str, _size_2_t] = 0,
        dilation: _size_2_t = 1,
        groups: int = 1,
        bias: bool = True,
        padding_mode: str = 'zeros',  # TODO: refine this type
        device=None,
        dtype=None
    ):
        """
        LoRA class for nn.Conv2d class
        """
        super().__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, device, dtype)
        self.r = r
        self.lora_alpha = lora_alpha
        # lora configuration
        self.lora_A = nn.Parameter(
            self.weight.new_zeros((r * kernel_size, in_channels * kernel_size))
        )
        self.lora_B = nn.Parameter(
            self.weight.new_zeros((out_channels * kernel_size, r * kernel_size))
        )
        self.scaling = self.lora_alpha / self.r
        self.reset_parameters_lora()
        self.merged = False
        self.drop_lora_rate = 0.9

    def reset_parameters_lora(self):
        nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
        nn.init.zeros_(self.lora_B)

    def train(self, mode: bool = True):
        super().train(mode)
        if self.merged:
            # Make sure that the weights are not merged
            self.weight.data -= (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling
            self.merged = False

    def eval(self):
        super().eval()
        if not self.merged:
            # Merge the weights and mark it
            self.weight.data += (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling
            self.merged = True

    def forward(self, x):
        # 产生一个随机数
        # drop_rate = random.random()
        
        # # 训练过程中以一定的概率不使用lora
        # if drop_rate <= self.drop_lora_rate and self.training:
        #     return F.conv2d(
        #         x,
        #         self.weight,
        #         self.bias, self.stride, self.padding, self.dilation, self.groups
        #     )
        # else:
        return F.conv2d(
            x,
            self.weight + (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling,
            self.bias, self.stride, self.padding, self.dilation, self.groups
        )



class MultiLoRALinear(LoRALayer):
    def __init__(self, r, lora_alpha, linear_layer,lora_num):
        """
        LoRA class for nn.Linear class
        :param r: low rank dimension
        :param lora_alpha: scaling factor
        :param linear_layer: target nn.Linear layer for applying Lora
        """
        super().__init__(r,lora_alpha)
        self.linear = linear_layer
        self.lora_num = lora_num
        self.r_list = r

        in_features = self.linear.in_features
        out_features = self.linear.out_features

        # Lora configuration
        self.lora_A_list = nn.ParameterList([nn.Parameter(self.linear.weight.new_zeros((self.r_list[th], in_features))) for th in range(self.lora_num)]) 
        self.lora_B_list = nn.ParameterList([nn.Parameter(self.linear.weight.new_zeros((out_features, self.r_list[th]))) for th in range(self.lora_num)]) 
        # self.lora_A = nn.Parameter(self.linear.weight.new_zeros((r, in_features)))
        # self.lora_B = nn.Parameter(self.linear.weight.new_zeros((out_features, r)))
        self.scaling = [self.lora_alpha / self.r_list[th] for th in range(self.lora_num)]
        self.reset_parameters()

    def reset_parameters(self):
        for th in range(self.lora_num):
            nn.init.kaiming_uniform_(self.lora_A_list[th], a=math.sqrt(5))
            nn.init.zeros_(self.lora_B_list[th])

    def train(self, mode:bool = True):
        self.linear.train(mode)

    def eval(self):
        self.linear.eval()
        
    def forward(self, x, weights):
        if not self.merged:
            result = F.linear(x, self.linear.weight, bias=self.linear.bias) # (247, batch, 768)
            out_stack = torch.stack([(x @ self.lora_A_list[th].T @ self.lora_B_list[th].T) * self.scaling[th] for th in range(self.lora_num)], dim=2) # (2353,16,3,768)
            # (247, batch, lora_num, 768)
            # weights = weights.unsqueeze(0).unsqueeze(-1) 
            # (1, batch, lora_num, 1)
            # out = torch.sum(out_stack * weights,dim=2)
            out = torch.sum(out_stack, dim=2)
            # (247, batch, 768)
            result += out
            # (247, batch, 768)
            return result
        else:
            return F.linear(x, self.linear.weight, bias=self.linear.bias)

class MultiLoraConv2d(LoRALayer):
    def __init__(self, r, lora_alpha, conv_layer, num_task):
        """
        LoRA class for nn.Conv2d class
        """
        super().__init__(r, lora_alpha)
        self.conv = conv_layer
        self.num_task = num_task

        in_channels = self.conv.in_channels
        out_channels = self.conv.out_channels
        kernel_size = self.conv.kernel_size[0]

        # lora configuration
        self.lora_A_list = nn.ParameterList([nn.Parameter(self.conv.weight.new_zeros((r * kernel_size, in_channels * kernel_size))) for th in range(num_task)]) 
        self.lora_B_list = nn.ParameterList([nn.Parameter(self.conv.weight.new_zeros((out_channels * kernel_size, r * kernel_size))) for th in range(num_task)]) 

        self.scaling = self.lora_alpha / self.r
        self.reset_parameters()

        self.merged = False
        self.label_batch = None

    def reset_parameters(self):
        for th in range(self.num_task):
            nn.init.kaiming_uniform_(self.lora_A_list[th], a=math.sqrt(5))
            nn.init.zeros_(self.lora_B_list[th])

    def train(self, mode: bool = True):
        self.conv.train(mode)


    def eval(self):
        self.conv.eval()


    def forward(self, input_x, alphas=None):
        if not self.merged:
            conv_weight_stack = torch.cat([(self.lora_B_list[th] @ self.lora_A_list[th]).view(self.conv.weight.shape).unsqueeze(0) * self.scaling for th in range(self.num_task)], dim=0)
            
            if isinstance(input_x, dict):
                # print('input is dict')
                x, alphas = input_x[0], input_x[1]
                
            else:
                x = input_x
            batch_size, c = x.shape[0], x.shape[1]
            # print(alphas)
            if alphas==None:
                print('在lora_fast里才是none')
            agg_weights = self.conv.weight + torch.sum(
                torch.mul(conv_weight_stack.unsqueeze(0), alphas.view(batch_size, -1, 1, 1, 1, 1)), dim=1)

            agg_weights = agg_weights.view(-1, *agg_weights.shape[-3:])
            x_grouped = x.view(1, -1, *x.shape[-2:])

            outputs = F.conv2d(x_grouped, agg_weights, self.conv.bias, self.conv.stride, self.conv.padding, self.conv.dilation, groups=batch_size)
            outputs = outputs.view(batch_size, -1, *outputs.shape[-2:])

            return outputs
        else:
            return self.conv(x)

    def merged_weight(self, th): # only for test
        self.conv.weight.data += (self.lora_B_list[th] @ self.lora_A_list[th]).view(self.conv.weight.shape) * self.scaling
        self.merged = True



__all__ = [
    "ResNet",
    "ResNet18_Weights",
    "ResNet34_Weights",
    "ResNet50_Weights",
    "ResNet101_Weights",
    "ResNet152_Weights",
    "ResNeXt50_32X4D_Weights",
    "ResNeXt101_32X8D_Weights",
    "ResNeXt101_64X4D_Weights",
    "Wide_ResNet50_2_Weights",
    "Wide_ResNet101_2_Weights",
    "resnet18",
    "resnet34",
    "resnet50",
    "resnet101",
    "resnet152",
    "resnext50_32x4d",
    "resnext101_32x8d",
    "resnext101_64x4d",
    "wide_resnet50_2",
    "wide_resnet101_2",
]


def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
    """3x3 convolution with padding"""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )


def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

def conv3x3_lora(r: int, lora_alpha: float, in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
    """3x3 convolution with padding"""
    return LoraConv2d(
        r,lora_alpha,
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )

def conv1x1_lora(r: int, lora_alpha: float, in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
    """1x1 convolution"""
    return LoraConv2d(r, lora_alpha, in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
    


class BasicBlock_Lora(nn.Module):
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        r: int,
        lora_alpha: float,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3_lora(r, lora_alpha, inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3_lora(r, lora_alpha, planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

class BasicBlock(nn.Module):
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.0)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out

class Bottleneck_Lora(nn.Module):
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        r: int,
        lora_alpha: float,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        width = int(planes * (base_width / 64.0)) * groups
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
        self.conv1 = conv1x1_lora(r, lora_alpha, inplanes, width)
        self.bn1 = norm_layer(width)
        self.conv2 = conv3x3_lora(r, lora_alpha, width, width, stride, groups, dilation)
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1_lora(r, lora_alpha, width, planes * self.expansion)
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: Tensor) -> Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(nn.Module):
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
            )
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck) and m.bn3.weight is not None:
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
                elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]

    def _make_layer(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        planes: int,
        blocks: int,
        stride: int = 1,
        dilate: bool = False,
    ) -> nn.Sequential:
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )

        return nn.Sequential(*layers)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)

class ResNet_Lora(nn.Module):
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        r: int,
        lora_alpha: float,
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super().__init__()
        _log_api_usage_once(self)
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
            )
        self.groups = groups
        self.base_width = width_per_group
        self.r = r
        self.lora_alpha = lora_alpha
        self.conv1 = LoraConv2d(self.r, self.lora_alpha, 3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, LoraConv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck) and m.bn3.weight is not None:
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
                elif isinstance(m, BasicBlock) and m.bn2.weight is not None:
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]

    def _make_layer(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        planes: int,
        blocks: int,
        stride: int = 1,
        dilate: bool = False,
    ) -> nn.Sequential:
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1_lora(self.r, self.lora_alpha, self.inplanes, planes * block.expansion, stride),
                norm_layer(planes * block.expansion),
            )

        layers = []
        layers.append(
            block(
                self.inplanes, planes, self.r, self.lora_alpha, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    self.r, 
                    self.lora_alpha,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )

        return nn.Sequential(*layers)

    def _forward_impl(self, x: Tensor) -> Tensor:
        # See note [TorchScript super()]
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        return self._forward_impl(x)



def _resnet(
    block: Type[Union[BasicBlock, Bottleneck]],
    layers: List[int],
    weights: Optional[WeightsEnum],
    progress: bool,
    **kwargs: Any,
) -> ResNet:
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

    model = ResNet(block, layers, **kwargs)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

    return model


def _resnet_lora(
    block: Type[Union[BasicBlock, Bottleneck]],
    layers: List[int],
    r: int,
    lora_alpha: float,
    weights: Optional[WeightsEnum],
    progress: bool,
    **kwargs: Any,
) -> ResNet_Lora:
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

    model = ResNet_Lora(block, layers, r, lora_alpha, **kwargs)
    if weights is not None:
        missing_keys, unexpected_keys =  model.load_state_dict(weights.get_state_dict(progress=progress), strict=False)

    for key_name in missing_keys:
        if 'lora_A' in key_name or 'lora_B' in key_name:
            pass
        else:
            raise ValueError(f'{key_name} in missing keys')
    
    if unexpected_keys != []:
        raise ValueError(f'Have unexpected keys {unexpected_keys}')
    
    return model

_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
}


class ResNet18_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 11689512,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 69.758,
                    "acc@5": 89.078,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet34_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet34-b627a593.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 21797672,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 73.314,
                    "acc@5": 91.420,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet50_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 76.130,
                    "acc@5": 92.862,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 80.858,
                    "acc@5": 95.434,
                }
            },
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet101_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet101-63fe2227.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 77.374,
                    "acc@5": 93.546,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet101-cd907fc2.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 81.886,
                    "acc@5": 95.780,
                }
            },
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet152_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet152-394f9c45.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 78.312,
                    "acc@5": 94.046,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet152-f82ba261.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.284,
                    "acc@5": 96.002,
                }
            },
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt50_32X4D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 77.618,
                    "acc@5": 93.698,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 81.198,
                    "acc@5": 95.340,
                }
            },
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt101_32X8D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 79.312,
                    "acc@5": 94.526,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.834,
                    "acc@5": 96.228,
                }
            },
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt101_64X4D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 83455272,
            "recipe": "https://github.com/pytorch/vision/pull/5935",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 83.246,
                    "acc@5": 96.454,
                }
            },
            "_docs": """
                These weights were trained from scratch by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
        },
    )
    DEFAULT = IMAGENET1K_V1


class Wide_ResNet50_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 78.468,
                    "acc@5": 94.086,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 81.602,
                    "acc@5": 95.758,
                }
            },
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
        },
    )
    DEFAULT = IMAGENET1K_V2


class Wide_ResNet101_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 78.848,
                    "acc@5": 94.284,
                }
            },
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "_metrics": {
                "ImageNet-1K": {
                    "acc@1": 82.510,
                    "acc@5": 96.020,
                }
            },
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
        },
    )
    DEFAULT = IMAGENET1K_V2


@handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1))
def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
    weights = ResNet18_Weights.verify(weights)

    return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)


@handle_legacy_interface(weights=("pretrained", ResNet34_Weights.IMAGENET1K_V1))
def resnet34(*, weights: Optional[ResNet34_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
    weights = ResNet34_Weights.verify(weights)

    return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs)


@handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1))
def resnet50(*, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
    weights = ResNet50_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)

@handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1))
def resnet50_lora(*, r: int, lora_alpha: float, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
    weights = ResNet50_Weights.verify(weights)

    return _resnet_lora(Bottleneck_Lora, [3, 4, 6, 3], r, lora_alpha, weights, progress, **kwargs)

@handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1))
def resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
    weights = ResNet101_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)

@handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1))
def resnet101_lora(*, r: int, lora_alpha: float, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
    weights = ResNet101_Weights.verify(weights)

    return _resnet_lora(Bottleneck_Lora, [3, 4, 23, 3], r, lora_alpha, weights, progress, **kwargs)


@handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1))
def resnet152(*, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
    weights = ResNet152_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs)

@handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1))
def resnet152_lora(*, r: int, lora_alpha: float, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
    weights = ResNet152_Weights.verify(weights)

    return _resnet_lora(Bottleneck_Lora, [3, 8, 36, 3], r, lora_alpha, weights, progress, **kwargs)


@handle_legacy_interface(weights=("pretrained", ResNeXt50_32X4D_Weights.IMAGENET1K_V1))
def resnext50_32x4d(
    *, weights: Optional[ResNeXt50_32X4D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
    weights = ResNeXt50_32X4D_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 4)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)


@handle_legacy_interface(weights=("pretrained", ResNeXt101_32X8D_Weights.IMAGENET1K_V1))
def resnext101_32x8d(
    *, weights: Optional[ResNeXt101_32X8D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
    weights = ResNeXt101_32X8D_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 8)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)


def resnext101_64x4d(
    *, weights: Optional[ResNeXt101_64X4D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
    weights = ResNeXt101_64X4D_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "groups", 64)
    _ovewrite_named_param(kwargs, "width_per_group", 4)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)


@handle_legacy_interface(weights=("pretrained", Wide_ResNet50_2_Weights.IMAGENET1K_V1))
def wide_resnet50_2(
    *, weights: Optional[Wide_ResNet50_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
    weights = Wide_ResNet50_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)


@handle_legacy_interface(weights=("pretrained", Wide_ResNet101_2_Weights.IMAGENET1K_V1))
def wide_resnet101_2(
    *, weights: Optional[Wide_ResNet101_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
    weights = Wide_ResNet101_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)


# The dictionary below is internal implementation detail and will be removed in v0.15
from torchvision.models._utils import _ModelURLs


model_urls = _ModelURLs(
    {
        "resnet18": ResNet18_Weights.IMAGENET1K_V1.url,
        "resnet34": ResNet34_Weights.IMAGENET1K_V1.url,
        "resnet50": ResNet50_Weights.IMAGENET1K_V1.url,
        "resnet101": ResNet101_Weights.IMAGENET1K_V1.url,
        "resnet152": ResNet152_Weights.IMAGENET1K_V1.url,
        "resnext50_32x4d": ResNeXt50_32X4D_Weights.IMAGENET1K_V1.url,
        "resnext101_32x8d": ResNeXt101_32X8D_Weights.IMAGENET1K_V1.url,
        "wide_resnet50_2": Wide_ResNet50_2_Weights.IMAGENET1K_V1.url,
        "wide_resnet101_2": Wide_ResNet101_2_Weights.IMAGENET1K_V1.url,
    }
)


if __name__ == '__main__':
    model = resnet50_lora(r=16, lora_alpha=16, weights='ResNet50_Weights.IMAGENET1K_V2')