|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bert-base-cased-finetuned-WikiNeural |
|
results: [] |
|
datasets: |
|
- Babelscape/wikineural |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
- seqeval |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
# bert-base-cased-finetuned-WikiNeural |
|
|
|
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0881 |
|
- Loc |
|
- Precision: 0.9282034236330398 |
|
- Recall: 0.9378673383711167 |
|
- F1: 0.9330103575008353 |
|
- Number: 5955 |
|
- Misc |
|
- Precision: 0.8336608897623727 |
|
- Rrecall: 0.9219521833629718 |
|
- F1: 0.8755864139613436 |
|
- Number: 5061 |
|
- Org |
|
- Precision: 0.9351851851851852 |
|
- Recall: 0.9370832125253696 |
|
- F1: 0.9361332367849385 |
|
- Number: 3449 |
|
- Per |
|
- Precision: 0.9728037566034045 |
|
- Recall: 0.9543186180422265 |
|
- F1: 0.9634725317314214 |
|
- Number: 5210 |
|
- Overall |
|
- Precision: 0.9145 |
|
- Recall: 0.9380 |
|
- F1: 0.9261 |
|
- Accuracy: 0.9912 |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20BERT-Base%20Transformer.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:------------:|:-----------:|:------------:|:--------:|:----------:|:--------:|:----------:|:---:| |
|
| 0.1 | 1.0 | 5795 | 0.0943 | 0.9075 | 0.9429 | 0.9249 | 5955 | 0.8320 | 0.8965 | 0.8630 | 5061 | 0.9151 | 0.9287 | 0.9219 | 3449 | 0.9683 | 0.9499 | 0.9590 | 5210 | 0.9039 | 0.9303 | 0.9169 | 0.9901 | |
|
| 0.0578 | 2.0 | 11590 | 0.0881 | 0.9282 | 0.9379 | 0.9330 | 5955 | 0.8337 | 0.9220 | 0.8756 | 5061 | 0.9352 | 0.9371 | 0.9361 | 3449 | 0.9728 | 0.9543 | 0.9635 | 5210 | 0.9145 | 0.9380 | 0.9261 | 0.9912 | |
|
|
|
* All values in the chart above are rounded to the nearest ten-thousandth. |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |