metadata
license: other
license_name: bespoke-lora-trained-license
license_link: >-
https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Rent&allowDerivatives=True&allowDifferentLicense=False
tags:
- text-to-image
- stable-diffusion
- lora
- diffusers
- template:sd-lora
- digital art
- chaos
- style
- wild
- cartoon
- doodle
- procreate
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: wte artstyle
widget:
- text: '(WTE) ARTSTYLE as a ((nurse)) in a neon lit city by '
output:
url: 2220066.jpeg
- text: (WTE) ARTSTYLE ((dancer)) in an underwater kingdom
output:
url: 2220060.jpeg
- text: (WTE) ARTSTYLE ((fashion model)) at a museum
output:
url: 2220151.jpeg
- text: ' '
output:
url: 2220157.jpeg
- text: ' '
output:
url: 2220158.jpeg
- text: ' '
output:
url: 2220201.jpeg
- text: ' '
output:
url: 2220197.jpeg
- text: ' '
output:
url: 2220199.jpeg
- text: ' '
output:
url: 2220200.jpeg
- text: ' '
output:
url: 2220198.jpeg
Digital Doodle Cartoon "worstimever" Artstyle - 218MB XL LoRA
Model description
Trained on 30 of my own digital doodles.
Use "wte artstyle" in prompt.
I was going by the handle "worstimever" when I had created the images used in the dataset so that is the name of the LoRA.
What this colorful chaotic cartoon style is lacking in constancy is made up for with by its personality.
I followed AI_Characters's guide on LoRA settings but with my own artstyle regulation images.
☕ Like what I do? ☕
☕ Buy me a coffee or two! ☕
Trigger words
You should use wte artstyle
to trigger the image generation.
Download model
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.
Use it with the 🧨 diffusers library
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('DoctorDiffusion/digital-doodle-cartoon-worstimever-artstyle-218mb-xl-lora', weight_name='DD-wte-artstyle-XL-v1.safetensors')
image = pipeline('`wte artstyle`').images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers