classificateur-intention_camembert

This model is a fine-tuned version of camembert/camembert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5463
  • Accuracy: 0.8889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7517 2.0 10 0.4700 0.8889
0.2834 4.0 20 0.3313 0.8889
0.0488 6.0 30 0.3528 0.8889
0.0181 8.0 40 0.6355 0.8889
0.0079 10.0 50 0.6676 0.8889
0.0437 12.0 60 0.5817 0.8889
0.0049 14.0 70 0.4499 0.8889
0.0192 16.0 80 0.5162 0.8889
0.0045 18.0 90 0.5420 0.8889
0.0042 20.0 100 0.5463 0.8889

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
107
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for DioulaD/classificateur-intention_camembert

Finetuned
(8)
this model