|
import os
|
|
import cv2
|
|
import onnx
|
|
import torch
|
|
import argparse
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
from models.TMC import ETMC
|
|
from models import image
|
|
|
|
from onnx2pytorch import ConvertModel
|
|
|
|
onnx_model = onnx.load('checkpoints/efficientnet.onnx')
|
|
pytorch_model = ConvertModel(onnx_model)
|
|
|
|
|
|
torch.manual_seed(42)
|
|
|
|
|
|
|
|
audio_args = {
|
|
'nb_samp': 64600,
|
|
'first_conv': 1024,
|
|
'in_channels': 1,
|
|
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
|
'blocks': [2, 4],
|
|
'nb_fc_node': 1024,
|
|
'gru_node': 1024,
|
|
'nb_gru_layer': 3,
|
|
'nb_classes': 2
|
|
}
|
|
|
|
|
|
def get_args(parser):
|
|
parser.add_argument("--batch_size", type=int, default=8)
|
|
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
|
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
|
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
|
parser.add_argument("--dropout", type=float, default=0.2)
|
|
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
|
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
|
parser.add_argument("--hidden_sz", type=int, default=768)
|
|
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
|
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
|
parser.add_argument("--include_bn", type=int, default=True)
|
|
parser.add_argument("--lr", type=float, default=1e-4)
|
|
parser.add_argument("--lr_factor", type=float, default=0.3)
|
|
parser.add_argument("--lr_patience", type=int, default=10)
|
|
parser.add_argument("--max_epochs", type=int, default=500)
|
|
parser.add_argument("--n_workers", type=int, default=12)
|
|
parser.add_argument("--name", type=str, default="MMDF")
|
|
parser.add_argument("--num_image_embeds", type=int, default=1)
|
|
parser.add_argument("--patience", type=int, default=20)
|
|
parser.add_argument("--savedir", type=str, default="./savepath/")
|
|
parser.add_argument("--seed", type=int, default=1)
|
|
parser.add_argument("--n_classes", type=int, default=2)
|
|
parser.add_argument("--annealing_epoch", type=int, default=10)
|
|
parser.add_argument("--device", type=str, default='cpu')
|
|
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
|
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
|
|
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
|
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
|
|
parser.add_argument("--augment_dataset", type = bool, default = True)
|
|
|
|
for key, value in audio_args.items():
|
|
parser.add_argument(f"--{key}", type=type(value), default=value)
|
|
|
|
def model_summary(args):
|
|
'''Prints the model summary.'''
|
|
model = ETMC(args)
|
|
|
|
for name, layer in model.named_modules():
|
|
print(name, layer)
|
|
|
|
def load_multimodal_model(args):
|
|
'''Load multimodal model'''
|
|
model = ETMC(args)
|
|
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
|
model.load_state_dict(ckpt, strict = True)
|
|
model.eval()
|
|
return model
|
|
|
|
def load_img_modality_model(args):
|
|
'''Loads image modality model.'''
|
|
rgb_encoder = pytorch_model
|
|
|
|
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
|
rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)
|
|
rgb_encoder.eval()
|
|
return rgb_encoder
|
|
|
|
def load_spec_modality_model(args):
|
|
spec_encoder = image.RawNet(args)
|
|
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
|
spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True)
|
|
spec_encoder.eval()
|
|
return spec_encoder
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="Inference models")
|
|
get_args(parser)
|
|
args, remaining_args = parser.parse_known_args()
|
|
assert remaining_args == [], remaining_args
|
|
|
|
spec_model = load_spec_modality_model(args)
|
|
|
|
img_model = load_img_modality_model(args)
|
|
|
|
|
|
def preprocess_img(face):
|
|
face = face / 255
|
|
face = cv2.resize(face, (256, 256))
|
|
|
|
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
|
|
return face_pt
|
|
|
|
def preprocess_audio(audio_file):
|
|
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
|
|
return audio_pt
|
|
|
|
def deepfakes_spec_predict(input_audio):
|
|
x, _ = input_audio
|
|
audio = preprocess_audio(x)
|
|
spec_grads = spec_model.forward(audio)
|
|
spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
max_value = np.argmax(spec_grads_inv)
|
|
|
|
if max_value > 0.5:
|
|
preds = round(100 - (max_value*100), 3)
|
|
text2 = f"The audio is REAL."
|
|
|
|
else:
|
|
preds = round(max_value*100, 3)
|
|
text2 = f"The audio is FAKE."
|
|
|
|
return text2
|
|
|
|
def deepfakes_image_predict(input_image):
|
|
face = preprocess_img(input_image)
|
|
print(f"Face shape is: {face.shape}")
|
|
img_grads = img_model.forward(face)
|
|
img_grads = img_grads.cpu().detach().numpy()
|
|
img_grads_np = np.squeeze(img_grads)
|
|
|
|
if img_grads_np[0] > 0.5:
|
|
preds = round(img_grads_np[0] * 100, 3)
|
|
text2 = f"The image is REAL. \nConfidence score is: {preds}"
|
|
|
|
else:
|
|
preds = round(img_grads_np[1] * 100, 3)
|
|
text2 = f"The image is FAKE. \nConfidence score is: {preds}"
|
|
|
|
return text2
|
|
|
|
|
|
def preprocess_video(input_video, n_frames = 3):
|
|
v_cap = cv2.VideoCapture(input_video)
|
|
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
if n_frames is None:
|
|
sample = np.arange(0, v_len)
|
|
else:
|
|
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
|
|
|
|
|
frames = []
|
|
for j in range(v_len):
|
|
success = v_cap.grab()
|
|
if j in sample:
|
|
|
|
success, frame = v_cap.retrieve()
|
|
if not success:
|
|
continue
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
frame = preprocess_img(frame)
|
|
frames.append(frame)
|
|
v_cap.release()
|
|
return frames
|
|
|
|
|
|
def deepfakes_video_predict(input_video):
|
|
'''Perform inference on a video.'''
|
|
video_frames = preprocess_video(input_video)
|
|
real_faces_list = []
|
|
fake_faces_list = []
|
|
|
|
for face in video_frames:
|
|
|
|
|
|
img_grads = img_model.forward(face)
|
|
img_grads = img_grads.cpu().detach().numpy()
|
|
img_grads_np = np.squeeze(img_grads)
|
|
real_faces_list.append(img_grads_np[0])
|
|
fake_faces_list.append(img_grads_np[1])
|
|
|
|
real_faces_mean = np.mean(real_faces_list)
|
|
fake_faces_mean = np.mean(fake_faces_list)
|
|
|
|
if real_faces_mean > 0.5:
|
|
preds = round(real_faces_mean * 100, 3)
|
|
text2 = f"The video is REAL. \nConfidence score is: {preds}%"
|
|
|
|
else:
|
|
preds = round(fake_faces_mean * 100, 3)
|
|
text2 = f"The video is FAKE. \nConfidence score is: {preds}%"
|
|
|
|
return text2
|
|
|
|
|