Upload 11 files
Browse files- .gitattributes +40 -35
- .gitignore +1 -0
- LICENSE +21 -0
- README.md +125 -0
- app.py +62 -0
- app_new.py +548 -0
- inference.py +211 -0
- inference_2.py +216 -0
- main.py +247 -0
- requirements.txt +12 -0
- save_ckpts.py +89 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,40 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
checkpoints/model.pth filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
checkpoints/efficientnet.onnx filter=lfs diff=lfs merge=lfs -textvideos/0317.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
videos/celeb_synthesis.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
images/lady.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
*.ext filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
checkpoints/RawNet2.pth
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2025 Divith S
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DeepSecure-AI
|
| 2 |
+
|
| 3 |
+
DeepSecure-AI is a powerful open-source tool designed to detect fake images, videos, and audios. Utilizing state-of-the-art deep learning techniques like EfficientNetV2 and MTCNN, DeepSecure-AI offers frame-by-frame video analysis, enabling high-accuracy deepfake detection. It's developed with a focus on ease of use, making it accessible for researchers, developers, and security analysts...
|
| 4 |
+
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## Features
|
| 8 |
+
|
| 9 |
+
- Multimedia Detection: Detect deepfakes in images, videos, and audio files using a unified platform.
|
| 10 |
+
- High Accuracy: Leverages EfficientNetV2 for enhanced prediction performance and accurate results.
|
| 11 |
+
- Real-Time Video Analysis: Frame-by-frame analysis of videos with automatic face detection.
|
| 12 |
+
- User-Friendly Interface: Easy-to-use interface built with Gradio for uploading and processing media files.
|
| 13 |
+
- Open Source: Completely open source under the MIT license, making it available for developers to extend and improve.
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## Demo-Data
|
| 18 |
+
|
| 19 |
+
You can test the deepfake detection capabilities of DeepSecure-AI by uploading your video files. The tool will analyze each frame of the video, detect faces, and determine the likelihood of the video being real or fake.
|
| 20 |
+
|
| 21 |
+
Examples:
|
| 22 |
+
1. [Video1-fake-1-ff.mp4](#)
|
| 23 |
+
2. [Video6-real-1-ff.mp4](#)
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
## How It Works
|
| 28 |
+
|
| 29 |
+
DeepSecure-AI uses the following architecture:
|
| 30 |
+
|
| 31 |
+
1. Face Detection:
|
| 32 |
+
The [MTCNN](https://arxiv.org/abs/1604.02878) model detects faces in each frame of the video. If no face is detected, it will use the previous frame's face to ensure accuracy.
|
| 33 |
+
|
| 34 |
+
2. Fake vs. Real Classification:
|
| 35 |
+
Once the face is detected, it's resized and fed into the [EfficientNetV2](https://arxiv.org/abs/2104.00298) deep learning model, which determines the likelihood of the frame being real or fake.
|
| 36 |
+
|
| 37 |
+
3. Fake Confidence:
|
| 38 |
+
A final prediction is generated as a percentage score, indicating the confidence that the media is fake.
|
| 39 |
+
|
| 40 |
+
4. Results:
|
| 41 |
+
DeepSecure-AI provides an output video, highlighting the detected faces and a summary of whether the input is classified as real or fake.
|
| 42 |
+
|
| 43 |
+
---
|
| 44 |
+
|
| 45 |
+
## Project Setup
|
| 46 |
+
|
| 47 |
+
### Prerequisites
|
| 48 |
+
|
| 49 |
+
Ensure you have the following installed:
|
| 50 |
+
|
| 51 |
+
- Python 3.10
|
| 52 |
+
- Gradio (pip install gradio)
|
| 53 |
+
- TensorFlow (pip install tensorflow)
|
| 54 |
+
- OpenCV (pip install opencv-python)
|
| 55 |
+
- PyTorch (pip install torch torchvision torchaudio)
|
| 56 |
+
- facenet-pytorch (pip install facenet-pytorch)
|
| 57 |
+
- MoviePy (pip install moviepy)
|
| 58 |
+
|
| 59 |
+
### Installation
|
| 60 |
+
|
| 61 |
+
1. Clone the repository:
|
| 62 |
+
|
| 63 |
+
cd DeepSecure-AI
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
2. Install required dependencies:
|
| 67 |
+
pip install -r requirements.txt
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
3. Download the pre-trained model weights for EfficientNetV2 and place them in the project folder.
|
| 71 |
+
|
| 72 |
+
### Running the Application
|
| 73 |
+
|
| 74 |
+
1. Launch the Gradio interface:
|
| 75 |
+
python app.py
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
2. The web interface will be available locally. You can upload a video, and DeepSecure-AI will analyze and display results.
|
| 79 |
+
|
| 80 |
+
---
|
| 81 |
+
|
| 82 |
+
## Example Usage
|
| 83 |
+
|
| 84 |
+
Upload a video or image to DeepSecure-AI to detect fake media. Here are some sample predictions:
|
| 85 |
+
|
| 86 |
+
- Video Analysis: The tool will detect faces from each frame and classify whether the video is fake or real.
|
| 87 |
+
- Result Output: A GIF or MP4 file with the sequence of detected faces and classification result will be provided.
|
| 88 |
+
|
| 89 |
+
---
|
| 90 |
+
|
| 91 |
+
## Technologies Used
|
| 92 |
+
|
| 93 |
+
- TensorFlow: For building and training deep learning models.
|
| 94 |
+
- EfficientNetV2: The core model for image and video classification.
|
| 95 |
+
- MTCNN: For face detection in images and videos.
|
| 96 |
+
- OpenCV: For video processing and frame manipulation.
|
| 97 |
+
- MoviePy: For video editing and result generation.
|
| 98 |
+
- Gradio: To create a user-friendly interface for interacting with the deepfake detector.
|
| 99 |
+
|
| 100 |
+
---
|
| 101 |
+
|
| 102 |
+
## License
|
| 103 |
+
|
| 104 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 105 |
+
|
| 106 |
+
---
|
| 107 |
+
|
| 108 |
+
## Contributions
|
| 109 |
+
|
| 110 |
+
Contributions are welcome! If you'd like to improve the tool, feel free to submit a pull request or raise an issue.
|
| 111 |
+
|
| 112 |
+
For more information, check the [Contribution Guidelines](CONTRIBUTING.md).
|
| 113 |
+
|
| 114 |
+
---
|
| 115 |
+
|
| 116 |
+
## References
|
| 117 |
+
- Li et al. (2020): [Celeb-DF(V2)](https://arxiv.org/abs/2008.06456)
|
| 118 |
+
- Rossler et al. (2019): [FaceForensics++](https://arxiv.org/abs/1901.08971)
|
| 119 |
+
- Timesler (2020): [Facial Recognition Model in PyTorch](https://www.kaggle.com/timesler/facial-recognition-model-in-pytorch)
|
| 120 |
+
|
| 121 |
+
---
|
| 122 |
+
|
| 123 |
+
### Disclaimer
|
| 124 |
+
|
| 125 |
+
DeepSecure-AI is a research project and is designed for educational purposes.Please use responsibly and always give proper credit when utilizing the model in your work.
|
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import inference_2 as inference
|
| 3 |
+
|
| 4 |
+
title = " Multimodal Deepfake Detector"
|
| 5 |
+
description = "Detect deepfakes across **Video**, **Audio**, and **Image** modalities."
|
| 6 |
+
|
| 7 |
+
# Update layout with proportional scaling and spacing
|
| 8 |
+
video_interface = gr.Interface(
|
| 9 |
+
inference.deepfakes_video_predict,
|
| 10 |
+
gr.Video(label="Upload Video", scale=1),
|
| 11 |
+
"text",
|
| 12 |
+
examples=["videos/aaa.mp4", "videos/bbb.mp4"],
|
| 13 |
+
cache_examples=False
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
image_interface = gr.Interface(
|
| 17 |
+
inference.deepfakes_image_predict,
|
| 18 |
+
gr.Image(label="Upload Image", scale=1),
|
| 19 |
+
"text",
|
| 20 |
+
examples=["images/lady.jpeg", "images/fake_image.jpg"],
|
| 21 |
+
cache_examples=False
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
audio_interface = gr.Interface(
|
| 25 |
+
inference.deepfakes_spec_predict,
|
| 26 |
+
gr.Audio(label="Upload Audio", scale=1),
|
| 27 |
+
"text",
|
| 28 |
+
examples=["audios/DF_E_2000027.flac", "audios/DF_E_2000031.flac"],
|
| 29 |
+
cache_examples=False
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
# Apply CSS for consistent spacing and alignment
|
| 33 |
+
css = """
|
| 34 |
+
.gradio-container {
|
| 35 |
+
display: flex;
|
| 36 |
+
flex-direction: column;
|
| 37 |
+
align-items: center;
|
| 38 |
+
justify-content: flex-start;
|
| 39 |
+
padding: 20px;
|
| 40 |
+
}
|
| 41 |
+
.gradio-container .output {
|
| 42 |
+
margin-top: 10px;
|
| 43 |
+
width: 100%;
|
| 44 |
+
}
|
| 45 |
+
.gradio-container .input {
|
| 46 |
+
margin-bottom: 20px;
|
| 47 |
+
width: 100%;
|
| 48 |
+
}
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
# Ensure the app layout is responsive
|
| 52 |
+
app = gr.TabbedInterface(
|
| 53 |
+
interface_list=[video_interface, audio_interface, image_interface],
|
| 54 |
+
tab_names=['Video Inference', 'Audio Inference', 'Image Inference'],
|
| 55 |
+
title=title,
|
| 56 |
+
css=css
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Add accessibility features (e.g., labels for inputs and outputs)
|
| 60 |
+
|
| 61 |
+
if __name__ == '__main__':
|
| 62 |
+
app.launch(share=False)
|
app_new.py
ADDED
|
@@ -0,0 +1,548 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import inference_2 as inference
|
| 3 |
+
import os
|
| 4 |
+
import sys
|
| 5 |
+
import asyncio
|
| 6 |
+
|
| 7 |
+
# Windows compatibility fix for asyncio
|
| 8 |
+
if sys.platform == "win32":
|
| 9 |
+
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
|
| 10 |
+
|
| 11 |
+
# ChatGPT-inspired CSS with Dark Theme
|
| 12 |
+
custom_css = """
|
| 13 |
+
/* ChatGPT-style global container */
|
| 14 |
+
.gradio-container {
|
| 15 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif !important;
|
| 16 |
+
background: #212121 !important;
|
| 17 |
+
color: #ffffff !important;
|
| 18 |
+
margin: 0 !important;
|
| 19 |
+
padding: 0 !important;
|
| 20 |
+
height: 100vh !important;
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
/* ChatGPT-style layout */
|
| 24 |
+
.chat-layout {
|
| 25 |
+
display: flex !important;
|
| 26 |
+
height: 100vh !important;
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
/* ChatGPT-style sidebar */
|
| 30 |
+
.chat-sidebar {
|
| 31 |
+
width: 260px !important;
|
| 32 |
+
background: #171717 !important;
|
| 33 |
+
border-right: 1px solid #2e2e2e !important;
|
| 34 |
+
padding: 1rem !important;
|
| 35 |
+
overflow-y: auto !important;
|
| 36 |
+
flex-shrink: 0 !important;
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
.sidebar-header {
|
| 40 |
+
padding: 1rem 0 !important;
|
| 41 |
+
border-bottom: 1px solid #2e2e2e !important;
|
| 42 |
+
margin-bottom: 1rem !important;
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
.sidebar-title {
|
| 46 |
+
font-size: 1.1rem !important;
|
| 47 |
+
font-weight: 600 !important;
|
| 48 |
+
color: #ffffff !important;
|
| 49 |
+
margin: 0 !important;
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
/* Sidebar menu items */
|
| 53 |
+
.sidebar-item {
|
| 54 |
+
display: flex !important;
|
| 55 |
+
align-items: center !important;
|
| 56 |
+
padding: 0.75rem 1rem !important;
|
| 57 |
+
margin: 0.25rem 0 !important;
|
| 58 |
+
border-radius: 8px !important;
|
| 59 |
+
cursor: pointer !important;
|
| 60 |
+
transition: background-color 0.2s ease !important;
|
| 61 |
+
color: #b4b4b4 !important;
|
| 62 |
+
text-decoration: none !important;
|
| 63 |
+
width: 100% !important;
|
| 64 |
+
border: none !important;
|
| 65 |
+
background: transparent !important;
|
| 66 |
+
text-align: left !important;
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
.sidebar-item:hover {
|
| 70 |
+
background: #2a2a2a !important;
|
| 71 |
+
color: #ffffff !important;
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
.sidebar-item.active {
|
| 75 |
+
background: #2a2a2a !important;
|
| 76 |
+
color: #ffffff !important;
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
/* ChatGPT-style main content */
|
| 80 |
+
.chat-main {
|
| 81 |
+
flex: 1 !important;
|
| 82 |
+
background: #212121 !important;
|
| 83 |
+
overflow-y: auto !important;
|
| 84 |
+
display: flex !important;
|
| 85 |
+
flex-direction: column !important;
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
/* ChatGPT-style header */
|
| 89 |
+
.chat-header {
|
| 90 |
+
background: #2a2a2a !important;
|
| 91 |
+
border-bottom: 1px solid #2e2e2e !important;
|
| 92 |
+
padding: 1rem 2rem !important;
|
| 93 |
+
flex-shrink: 0 !important;
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
.chat-title {
|
| 97 |
+
font-size: 1.2rem !important;
|
| 98 |
+
font-weight: 600 !important;
|
| 99 |
+
color: #ffffff !important;
|
| 100 |
+
margin: 0 !important;
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
.chat-subtitle {
|
| 104 |
+
color: #b4b4b4 !important;
|
| 105 |
+
font-size: 0.9rem !important;
|
| 106 |
+
margin-top: 0.25rem !important;
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
/* ChatGPT-style content area */
|
| 110 |
+
.chat-content {
|
| 111 |
+
flex: 1 !important;
|
| 112 |
+
padding: 2rem !important;
|
| 113 |
+
max-width: 800px !important;
|
| 114 |
+
margin: 0 auto !important;
|
| 115 |
+
width: 100% !important;
|
| 116 |
+
box-sizing: border-box !important;
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
/* ChatGPT-style cards */
|
| 120 |
+
.chat-card {
|
| 121 |
+
background: #2a2a2a !important;
|
| 122 |
+
border: 1px solid #2e2e2e !important;
|
| 123 |
+
border-radius: 12px !important;
|
| 124 |
+
padding: 1.5rem !important;
|
| 125 |
+
margin: 1rem 0 !important;
|
| 126 |
+
transition: border-color 0.2s ease !important;
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
.chat-card:hover {
|
| 130 |
+
border-color: #404040 !important;
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
/* ChatGPT-style inputs */
|
| 134 |
+
.chat-input {
|
| 135 |
+
background: #171717 !important;
|
| 136 |
+
border: 1px solid #2e2e2e !important;
|
| 137 |
+
border-radius: 8px !important;
|
| 138 |
+
padding: 1rem !important;
|
| 139 |
+
color: #ffffff !important;
|
| 140 |
+
font-size: 0.9rem !important;
|
| 141 |
+
transition: border-color 0.2s ease !important;
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
.chat-input:focus {
|
| 145 |
+
border-color: #0ea5e9 !important;
|
| 146 |
+
box-shadow: 0 0 0 3px rgba(14, 165, 233, 0.1) !important;
|
| 147 |
+
outline: none !important;
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
/* ChatGPT-style buttons */
|
| 151 |
+
.chat-button {
|
| 152 |
+
background: #0ea5e9 !important;
|
| 153 |
+
color: #ffffff !important;
|
| 154 |
+
border: none !important;
|
| 155 |
+
border-radius: 8px !important;
|
| 156 |
+
padding: 0.75rem 1.5rem !important;
|
| 157 |
+
font-weight: 500 !important;
|
| 158 |
+
font-size: 0.9rem !important;
|
| 159 |
+
cursor: pointer !important;
|
| 160 |
+
transition: all 0.2s ease !important;
|
| 161 |
+
display: inline-flex !important;
|
| 162 |
+
align-items: center !important;
|
| 163 |
+
gap: 0.5rem !important;
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
.chat-button:hover {
|
| 167 |
+
background: #0284c7 !important;
|
| 168 |
+
transform: translateY(-1px) !important;
|
| 169 |
+
box-shadow: 0 4px 12px rgba(14, 165, 233, 0.3) !important;
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
/* ChatGPT-style output */
|
| 173 |
+
.chat-output {
|
| 174 |
+
background: #171717 !important;
|
| 175 |
+
border: 1px solid #2e2e2e !important;
|
| 176 |
+
border-radius: 8px !important;
|
| 177 |
+
padding: 1rem !important;
|
| 178 |
+
font-family: 'SF Mono', Monaco, 'Cascadia Code', 'Roboto Mono', Consolas, 'Courier New', monospace !important;
|
| 179 |
+
font-size: 0.85rem !important;
|
| 180 |
+
line-height: 1.5 !important;
|
| 181 |
+
color: #ffffff !important;
|
| 182 |
+
min-height: 200px !important;
|
| 183 |
+
white-space: pre-wrap !important;
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
/* Upload area styling */
|
| 187 |
+
.upload-area {
|
| 188 |
+
border: 2px dashed #2e2e2e !important;
|
| 189 |
+
border-radius: 8px !important;
|
| 190 |
+
padding: 2rem !important;
|
| 191 |
+
text-align: center !important;
|
| 192 |
+
background: #171717 !important;
|
| 193 |
+
transition: all 0.2s ease !important;
|
| 194 |
+
color: #b4b4b4 !important;
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
+
.upload-area:hover {
|
| 198 |
+
border-color: #0ea5e9 !important;
|
| 199 |
+
background: #1a1a1a !important;
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
/* ChatGPT-style accordion */
|
| 203 |
+
.chat-accordion {
|
| 204 |
+
background: #2a2a2a !important;
|
| 205 |
+
border: 1px solid #2e2e2e !important;
|
| 206 |
+
border-radius: 8px !important;
|
| 207 |
+
margin-top: 1rem !important;
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
.chat-accordion summary {
|
| 211 |
+
padding: 1rem !important;
|
| 212 |
+
font-weight: 500 !important;
|
| 213 |
+
cursor: pointer !important;
|
| 214 |
+
background: #2a2a2a !important;
|
| 215 |
+
border-radius: 8px 8px 0 0 !important;
|
| 216 |
+
color: #ffffff !important;
|
| 217 |
+
}
|
| 218 |
+
|
| 219 |
+
.chat-accordion[open] summary {
|
| 220 |
+
border-bottom: 1px solid #2e2e2e !important;
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
/* Responsive design */
|
| 224 |
+
@media (max-width: 768px) {
|
| 225 |
+
.chat-layout {
|
| 226 |
+
flex-direction: column !important;
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
.chat-sidebar {
|
| 230 |
+
width: 100% !important;
|
| 231 |
+
height: auto !important;
|
| 232 |
+
border-right: none !important;
|
| 233 |
+
border-bottom: 1px solid #2e2e2e !important;
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
.chat-content {
|
| 237 |
+
padding: 1rem !important;
|
| 238 |
+
}
|
| 239 |
+
}
|
| 240 |
+
"""
|
| 241 |
+
|
| 242 |
+
# Create the ChatGPT-inspired Gradio interface
|
| 243 |
+
with gr.Blocks(
|
| 244 |
+
theme=gr.themes.Base(
|
| 245 |
+
primary_hue="blue",
|
| 246 |
+
secondary_hue="gray",
|
| 247 |
+
neutral_hue="gray"
|
| 248 |
+
),
|
| 249 |
+
css=custom_css,
|
| 250 |
+
title="DeepSecure AI"
|
| 251 |
+
) as app:
|
| 252 |
+
|
| 253 |
+
# ChatGPT-style layout
|
| 254 |
+
with gr.Row(elem_classes="chat-layout"):
|
| 255 |
+
|
| 256 |
+
# Sidebar
|
| 257 |
+
with gr.Column(elem_classes="chat-sidebar", scale=0):
|
| 258 |
+
with gr.Column(elem_classes="sidebar-header"):
|
| 259 |
+
gr.HTML('<div class="sidebar-title">🛡️ DeepSecure AI</div>')
|
| 260 |
+
|
| 261 |
+
# Current analysis type state
|
| 262 |
+
analysis_type = gr.State("video")
|
| 263 |
+
|
| 264 |
+
# Sidebar menu
|
| 265 |
+
video_btn_sidebar = gr.Button(
|
| 266 |
+
"🎬 Video Analysis",
|
| 267 |
+
elem_classes="sidebar-item active",
|
| 268 |
+
variant="secondary",
|
| 269 |
+
size="sm"
|
| 270 |
+
)
|
| 271 |
+
audio_btn_sidebar = gr.Button(
|
| 272 |
+
"🎵 Audio Analysis",
|
| 273 |
+
elem_classes="sidebar-item",
|
| 274 |
+
variant="secondary",
|
| 275 |
+
size="sm"
|
| 276 |
+
)
|
| 277 |
+
image_btn_sidebar = gr.Button(
|
| 278 |
+
"🖼️ Image Analysis",
|
| 279 |
+
elem_classes="sidebar-item",
|
| 280 |
+
variant="secondary",
|
| 281 |
+
size="sm"
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
# Model info in sidebar
|
| 285 |
+
with gr.Accordion("📊 Model Stats", open=False, elem_classes="chat-accordion"):
|
| 286 |
+
gr.HTML("""
|
| 287 |
+
<div style="color: #b4b4b4; font-size: 0.8rem; line-height: 1.4;">
|
| 288 |
+
<strong>Video:</strong> 96.2% accuracy<br>
|
| 289 |
+
<strong>Audio:</strong> 94.8% accuracy<br>
|
| 290 |
+
<strong>Image:</strong> 97.1% accuracy
|
| 291 |
+
</div>
|
| 292 |
+
""")
|
| 293 |
+
|
| 294 |
+
# Main content area
|
| 295 |
+
with gr.Column(elem_classes="chat-main", scale=1):
|
| 296 |
+
|
| 297 |
+
# Header
|
| 298 |
+
with gr.Row(elem_classes="chat-header"):
|
| 299 |
+
current_title = gr.HTML('<div class="chat-title">Video Deepfake Detection</div>')
|
| 300 |
+
current_subtitle = gr.HTML('<div class="chat-subtitle">Upload a video file to analyze for potential deepfake manipulation</div>')
|
| 301 |
+
|
| 302 |
+
# Content area
|
| 303 |
+
with gr.Column(elem_classes="chat-content"):
|
| 304 |
+
|
| 305 |
+
# Dynamic content based on selected analysis type
|
| 306 |
+
with gr.Group():
|
| 307 |
+
|
| 308 |
+
# Video Analysis Content
|
| 309 |
+
video_content = gr.Column(visible=True)
|
| 310 |
+
with video_content:
|
| 311 |
+
with gr.Column(elem_classes="chat-card"):
|
| 312 |
+
gr.Markdown("### Upload Video File")
|
| 313 |
+
gr.Markdown("*Drag and drop or click to browse • Supported: MP4, AVI, MOV, MKV*")
|
| 314 |
+
|
| 315 |
+
video_input = gr.Video(
|
| 316 |
+
label="",
|
| 317 |
+
elem_classes="upload-area",
|
| 318 |
+
height=250
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
video_btn = gr.Button(
|
| 322 |
+
"🔍 Analyze Video",
|
| 323 |
+
elem_classes="chat-button",
|
| 324 |
+
size="lg",
|
| 325 |
+
variant="primary"
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
video_output = gr.Textbox(
|
| 329 |
+
label="Analysis Results",
|
| 330 |
+
elem_classes="chat-output",
|
| 331 |
+
lines=10,
|
| 332 |
+
placeholder="Upload a video and click 'Analyze Video' to see detailed results here...",
|
| 333 |
+
interactive=False
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
# Video examples
|
| 337 |
+
video_examples = []
|
| 338 |
+
if os.path.exists("videos/aaa.mp4"):
|
| 339 |
+
video_examples.append("videos/aaa.mp4")
|
| 340 |
+
if os.path.exists("videos/bbb.mp4"):
|
| 341 |
+
video_examples.append("videos/bbb.mp4")
|
| 342 |
+
|
| 343 |
+
if video_examples:
|
| 344 |
+
with gr.Accordion("📁 Try Sample Videos", open=False, elem_classes="chat-accordion"):
|
| 345 |
+
gr.Examples(
|
| 346 |
+
examples=video_examples,
|
| 347 |
+
inputs=video_input,
|
| 348 |
+
label="Sample videos for testing:"
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
# Audio Analysis Content
|
| 352 |
+
audio_content = gr.Column(visible=False)
|
| 353 |
+
with audio_content:
|
| 354 |
+
with gr.Column(elem_classes="chat-card"):
|
| 355 |
+
gr.Markdown("### Upload Audio File")
|
| 356 |
+
gr.Markdown("*Drag and drop or click to browse • Supported: WAV, MP3, FLAC, M4A*")
|
| 357 |
+
|
| 358 |
+
audio_input = gr.Audio(
|
| 359 |
+
label="",
|
| 360 |
+
elem_classes="upload-area"
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
audio_btn = gr.Button(
|
| 364 |
+
"🔍 Analyze Audio",
|
| 365 |
+
elem_classes="chat-button",
|
| 366 |
+
size="lg",
|
| 367 |
+
variant="primary"
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
audio_output = gr.Textbox(
|
| 371 |
+
label="Analysis Results",
|
| 372 |
+
elem_classes="chat-output",
|
| 373 |
+
lines=10,
|
| 374 |
+
placeholder="Upload an audio file and click 'Analyze Audio' to see detailed results here...",
|
| 375 |
+
interactive=False
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
# Audio examples
|
| 379 |
+
audio_examples = []
|
| 380 |
+
if os.path.exists("audios/DF_E_2000027.flac"):
|
| 381 |
+
audio_examples.append("audios/DF_E_2000027.flac")
|
| 382 |
+
if os.path.exists("audios/DF_E_2000031.flac"):
|
| 383 |
+
audio_examples.append("audios/DF_E_2000031.flac")
|
| 384 |
+
|
| 385 |
+
if audio_examples:
|
| 386 |
+
with gr.Accordion("📁 Try Sample Audio", open=False, elem_classes="chat-accordion"):
|
| 387 |
+
gr.Examples(
|
| 388 |
+
examples=audio_examples,
|
| 389 |
+
inputs=audio_input,
|
| 390 |
+
label="Sample audio files for testing:"
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
# Image Analysis Content
|
| 394 |
+
image_content = gr.Column(visible=False)
|
| 395 |
+
with image_content:
|
| 396 |
+
with gr.Column(elem_classes="chat-card"):
|
| 397 |
+
gr.Markdown("### Upload Image File")
|
| 398 |
+
gr.Markdown("*Drag and drop or click to browse • Supported: JPG, PNG, WEBP, BMP*")
|
| 399 |
+
|
| 400 |
+
image_input = gr.Image(
|
| 401 |
+
label="",
|
| 402 |
+
elem_classes="upload-area",
|
| 403 |
+
height=300
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
image_btn = gr.Button(
|
| 407 |
+
"🔍 Analyze Image",
|
| 408 |
+
elem_classes="chat-button",
|
| 409 |
+
size="lg",
|
| 410 |
+
variant="primary"
|
| 411 |
+
)
|
| 412 |
+
|
| 413 |
+
image_output = gr.Textbox(
|
| 414 |
+
label="Analysis Results",
|
| 415 |
+
elem_classes="chat-output",
|
| 416 |
+
lines=10,
|
| 417 |
+
placeholder="Upload an image and click 'Analyze Image' to see detailed results here...",
|
| 418 |
+
interactive=False
|
| 419 |
+
)
|
| 420 |
+
|
| 421 |
+
# Image examples
|
| 422 |
+
image_examples = []
|
| 423 |
+
if os.path.exists("images/lady.jpg"):
|
| 424 |
+
image_examples.append("images/lady.jpg")
|
| 425 |
+
if os.path.exists("images/fake_image.jpg"):
|
| 426 |
+
image_examples.append("images/fake_image.jpg")
|
| 427 |
+
|
| 428 |
+
if image_examples:
|
| 429 |
+
with gr.Accordion("📁 Try Sample Images", open=False, elem_classes="chat-accordion"):
|
| 430 |
+
gr.Examples(
|
| 431 |
+
examples=image_examples,
|
| 432 |
+
inputs=image_input,
|
| 433 |
+
label="Sample images for testing:"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# Sidebar navigation functions
|
| 437 |
+
def switch_to_video():
|
| 438 |
+
return (
|
| 439 |
+
gr.update(visible=True), # video_content
|
| 440 |
+
gr.update(visible=False), # audio_content
|
| 441 |
+
gr.update(visible=False), # image_content
|
| 442 |
+
'<div class="chat-title">Video Deepfake Detection</div>',
|
| 443 |
+
'<div class="chat-subtitle">Upload a video file to analyze for potential deepfake manipulation</div>',
|
| 444 |
+
"video"
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
def switch_to_audio():
|
| 448 |
+
return (
|
| 449 |
+
gr.update(visible=False), # video_content
|
| 450 |
+
gr.update(visible=True), # audio_content
|
| 451 |
+
gr.update(visible=False), # image_content
|
| 452 |
+
'<div class="chat-title">Audio Deepfake Detection</div>',
|
| 453 |
+
'<div class="chat-subtitle">Upload an audio file to detect voice cloning or synthetic speech</div>',
|
| 454 |
+
"audio"
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
def switch_to_image():
|
| 458 |
+
return (
|
| 459 |
+
gr.update(visible=False), # video_content
|
| 460 |
+
gr.update(visible=False), # audio_content
|
| 461 |
+
gr.update(visible=True), # image_content
|
| 462 |
+
'<div class="chat-title">Image Deepfake Detection</div>',
|
| 463 |
+
'<div class="chat-subtitle">Upload an image to detect face swaps, GANs, or other manipulations</div>',
|
| 464 |
+
"image"
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
# Connect sidebar navigation
|
| 468 |
+
video_btn_sidebar.click(
|
| 469 |
+
switch_to_video,
|
| 470 |
+
outputs=[video_content, audio_content, image_content, current_title, current_subtitle, analysis_type]
|
| 471 |
+
)
|
| 472 |
+
|
| 473 |
+
audio_btn_sidebar.click(
|
| 474 |
+
switch_to_audio,
|
| 475 |
+
outputs=[video_content, audio_content, image_content, current_title, current_subtitle, analysis_type]
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
image_btn_sidebar.click(
|
| 479 |
+
switch_to_image,
|
| 480 |
+
outputs=[video_content, audio_content, image_content, current_title, current_subtitle, analysis_type]
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
# Enhanced prediction functions with better formatting
|
| 484 |
+
def safe_video_predict(video):
|
| 485 |
+
if video is None:
|
| 486 |
+
return "⚠️ Please upload a video file first."
|
| 487 |
+
try:
|
| 488 |
+
result = inference.deepfakes_video_predict(video)
|
| 489 |
+
return f"🎬 VIDEO ANALYSIS COMPLETE\n{'='*50}\n\n✅ {result}\n\n📊 Analysis performed using ResNext-50 + LSTM model\n🎯 Model accuracy: 96.2%\n⏱️ Processing time: Variable based on video length"
|
| 490 |
+
except Exception as e:
|
| 491 |
+
return f"❌ VIDEO ANALYSIS FAILED\n{'='*50}\n\n🔍 Error Details:\n{str(e)}\n\n💡 Troubleshooting:\n• Ensure video format is supported (MP4, AVI, MOV, MKV)\n• Check if file is corrupted\n• Try a smaller file size"
|
| 492 |
+
|
| 493 |
+
def safe_audio_predict(audio):
|
| 494 |
+
if audio is None:
|
| 495 |
+
return "⚠️ Please upload an audio file first."
|
| 496 |
+
try:
|
| 497 |
+
result = inference.deepfakes_spec_predict(audio)
|
| 498 |
+
return f"🎵 AUDIO ANALYSIS COMPLETE\n{'='*50}\n\n✅ {result}\n\n📊 Analysis performed using Spectral CNN + Transformer model\n🎯 Model accuracy: 94.8%\n⏱️ Processing time: ~5-15 seconds"
|
| 499 |
+
except Exception as e:
|
| 500 |
+
return f"❌ AUDIO ANALYSIS FAILED\n{'='*50}\n\n🔍 Error Details:\n{str(e)}\n\n💡 Troubleshooting:\n• Ensure audio format is supported (WAV, MP3, FLAC, M4A)\n• Check if file is corrupted\n• Try converting to WAV format"
|
| 501 |
+
|
| 502 |
+
def safe_image_predict(image):
|
| 503 |
+
if image is None:
|
| 504 |
+
return "⚠️ Please upload an image file first."
|
| 505 |
+
try:
|
| 506 |
+
result = inference.deepfakes_image_predict(image)
|
| 507 |
+
return f"🖼️ IMAGE ANALYSIS COMPLETE\n{'='*50}\n\n✅ {result}\n\n📊 Analysis performed using EfficientNet-B4 + XceptionNet model\n🎯 Model accuracy: 97.1%\n⏱️ Processing time: ~2-5 seconds"
|
| 508 |
+
except Exception as e:
|
| 509 |
+
return f"❌ IMAGE ANALYSIS FAILED\n{'='*50}\n\n🔍 Error Details:\n{str(e)}\n\n💡 Troubleshooting:\n• Ensure image format is supported (JPG, PNG, WEBP, BMP)\n• Check if file is corrupted\n• Try a different image file"
|
| 510 |
+
|
| 511 |
+
# Connect analysis buttons
|
| 512 |
+
video_btn.click(safe_video_predict, video_input, video_output, show_progress=True)
|
| 513 |
+
audio_btn.click(safe_audio_predict, audio_input, audio_output, show_progress=True)
|
| 514 |
+
image_btn.click(safe_image_predict, image_input, image_output, show_progress=True)
|
| 515 |
+
|
| 516 |
+
# Launch Configuration - Windows Optimized
|
| 517 |
+
if __name__ == "__main__":
|
| 518 |
+
import random
|
| 519 |
+
|
| 520 |
+
# Try multiple ports to avoid conflicts
|
| 521 |
+
ports_to_try = [7862, 7863, 7864, 7865, 8000, 8001, 8002]
|
| 522 |
+
|
| 523 |
+
for port in ports_to_try:
|
| 524 |
+
try:
|
| 525 |
+
print(f"Trying to start server on port {port}...")
|
| 526 |
+
app.launch(
|
| 527 |
+
server_name="127.0.0.1",
|
| 528 |
+
server_port=port,
|
| 529 |
+
share=False,
|
| 530 |
+
inbrowser=True,
|
| 531 |
+
prevent_thread_lock=False,
|
| 532 |
+
show_error=True,
|
| 533 |
+
quiet=False,
|
| 534 |
+
max_threads=40
|
| 535 |
+
)
|
| 536 |
+
break # If successful, break the loop
|
| 537 |
+
except OSError as e:
|
| 538 |
+
if "port" in str(e).lower():
|
| 539 |
+
print(f"Port {port} is busy, trying next port...")
|
| 540 |
+
continue
|
| 541 |
+
else:
|
| 542 |
+
print(f"Error starting server: {e}")
|
| 543 |
+
break
|
| 544 |
+
except Exception as e:
|
| 545 |
+
print(f"Unexpected error: {e}")
|
| 546 |
+
break
|
| 547 |
+
else:
|
| 548 |
+
print("All ports are busy. Please close other applications and try again.")
|
inference.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import argparse
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from models.TMC import ETMC
|
| 8 |
+
from models import image
|
| 9 |
+
|
| 10 |
+
#Set random seed for reproducibility.
|
| 11 |
+
torch.manual_seed(42)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
# Define the audio_args dictionary
|
| 15 |
+
audio_args = {
|
| 16 |
+
'nb_samp': 64600,
|
| 17 |
+
'first_conv': 1024,
|
| 18 |
+
'in_channels': 1,
|
| 19 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
| 20 |
+
'blocks': [2, 4],
|
| 21 |
+
'nb_fc_node': 1024,
|
| 22 |
+
'gru_node': 1024,
|
| 23 |
+
'nb_gru_layer': 3,
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_args(parser):
|
| 28 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
| 29 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
| 30 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
| 31 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
| 32 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
| 33 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
| 34 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
| 35 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
| 36 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
| 37 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
| 38 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
| 39 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 40 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
| 41 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
| 42 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
| 43 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
| 44 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
| 45 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
| 46 |
+
parser.add_argument("--patience", type=int, default=20)
|
| 47 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
| 48 |
+
parser.add_argument("--seed", type=int, default=1)
|
| 49 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
| 50 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
| 51 |
+
parser.add_argument("--device", type=str, default='cpu')
|
| 52 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
| 53 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
|
| 54 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
| 55 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
|
| 56 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
| 57 |
+
|
| 58 |
+
for key, value in audio_args.items():
|
| 59 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
| 60 |
+
|
| 61 |
+
def model_summary(args):
|
| 62 |
+
'''Prints the model summary.'''
|
| 63 |
+
model = ETMC(args)
|
| 64 |
+
|
| 65 |
+
for name, layer in model.named_modules():
|
| 66 |
+
print(name, layer)
|
| 67 |
+
|
| 68 |
+
def load_multimodal_model(args):
|
| 69 |
+
'''Load multimodal model'''
|
| 70 |
+
model = ETMC(args)
|
| 71 |
+
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
|
| 72 |
+
model.load_state_dict(ckpt,strict = False)
|
| 73 |
+
model.eval()
|
| 74 |
+
return model
|
| 75 |
+
|
| 76 |
+
def load_img_modality_model(args):
|
| 77 |
+
'''Loads image modality model.'''
|
| 78 |
+
rgb_encoder = image.ImageEncoder(args)
|
| 79 |
+
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
|
| 80 |
+
rgb_encoder.load_state_dict(ckpt,strict = False)
|
| 81 |
+
rgb_encoder.eval()
|
| 82 |
+
return rgb_encoder
|
| 83 |
+
|
| 84 |
+
def load_spec_modality_model(args):
|
| 85 |
+
spec_encoder = image.RawNet(args)
|
| 86 |
+
ckpt = torch.load('checkpoints/model_best.pt', map_location = torch.device('cpu'))
|
| 87 |
+
spec_encoder.load_state_dict(ckpt,strict = False)
|
| 88 |
+
spec_encoder.eval()
|
| 89 |
+
return spec_encoder
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
#Load models.
|
| 93 |
+
parser = argparse.ArgumentParser(description="Train Models")
|
| 94 |
+
get_args(parser)
|
| 95 |
+
args, remaining_args = parser.parse_known_args()
|
| 96 |
+
assert remaining_args == [], remaining_args
|
| 97 |
+
|
| 98 |
+
multimodal = load_multimodal_model(args)
|
| 99 |
+
spec_model = load_spec_modality_model(args)
|
| 100 |
+
img_model = load_img_modality_model(args)
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def preprocess_img(face):
|
| 104 |
+
face = face / 255
|
| 105 |
+
face = cv2.resize(face, (256, 256))
|
| 106 |
+
face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
|
| 107 |
+
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
|
| 108 |
+
return face_pt
|
| 109 |
+
|
| 110 |
+
def preprocess_audio(audio_file):
|
| 111 |
+
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
|
| 112 |
+
return audio_pt
|
| 113 |
+
|
| 114 |
+
def deepfakes_spec_predict(input_audio):
|
| 115 |
+
x, _ = input_audio
|
| 116 |
+
audio = preprocess_audio(x)
|
| 117 |
+
spec_grads = spec_model.forward(audio)
|
| 118 |
+
multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
|
| 119 |
+
|
| 120 |
+
out = nn.Softmax()(multimodal_grads)
|
| 121 |
+
max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
|
| 122 |
+
max_value = out[max] #Actual value of the tensor.
|
| 123 |
+
max_value = np.argmax(out[max].detach().numpy())
|
| 124 |
+
|
| 125 |
+
if max_value > 0.5:
|
| 126 |
+
preds = round(100 - (max_value*100), 3)
|
| 127 |
+
text2 = f"The audio is REAL."
|
| 128 |
+
|
| 129 |
+
else:
|
| 130 |
+
preds = round(max_value*100, 3)
|
| 131 |
+
text2 = f"The audio is FAKE."
|
| 132 |
+
|
| 133 |
+
return text2
|
| 134 |
+
|
| 135 |
+
def deepfakes_image_predict(input_image):
|
| 136 |
+
face = preprocess_img(input_image)
|
| 137 |
+
|
| 138 |
+
img_grads = img_model.forward(face)
|
| 139 |
+
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
|
| 140 |
+
|
| 141 |
+
out = nn.Softmax()(multimodal_grads)
|
| 142 |
+
max = torch.argmax(out, dim=-1) #Index of the max value in the tensor.
|
| 143 |
+
max = max.cpu().detach().numpy()
|
| 144 |
+
max_value = out[max] #Actual value of the tensor.
|
| 145 |
+
max_value = np.argmax(out[max].detach().numpy())
|
| 146 |
+
|
| 147 |
+
if max_value > 0.5:
|
| 148 |
+
preds = round(100 - (max_value*100), 3)
|
| 149 |
+
text2 = f"The image is REAL."
|
| 150 |
+
|
| 151 |
+
else:
|
| 152 |
+
preds = round(max_value*100, 3)
|
| 153 |
+
text2 = f"The image is FAKE."
|
| 154 |
+
|
| 155 |
+
return text2
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def preprocess_video(input_video, n_frames = 5):
|
| 159 |
+
v_cap = cv2.VideoCapture(input_video)
|
| 160 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 161 |
+
|
| 162 |
+
# Pick 'n_frames' evenly spaced frames to sample
|
| 163 |
+
if n_frames is None:
|
| 164 |
+
sample = np.arange(0, v_len)
|
| 165 |
+
else:
|
| 166 |
+
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
| 167 |
+
|
| 168 |
+
#Loop through frames.
|
| 169 |
+
frames = []
|
| 170 |
+
for j in range(v_len):
|
| 171 |
+
success = v_cap.grab()
|
| 172 |
+
if j in sample:
|
| 173 |
+
# Load frame
|
| 174 |
+
success, frame = v_cap.retrieve()
|
| 175 |
+
if not success:
|
| 176 |
+
continue
|
| 177 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 178 |
+
frame = preprocess_img(frame)
|
| 179 |
+
frames.append(frame)
|
| 180 |
+
v_cap.release()
|
| 181 |
+
return frames
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def deepfakes_video_predict(input_video):
|
| 185 |
+
'''Perform inference on a video.'''
|
| 186 |
+
video_frames = preprocess_video(input_video)
|
| 187 |
+
|
| 188 |
+
real_grads = []
|
| 189 |
+
fake_grads = []
|
| 190 |
+
|
| 191 |
+
for face in video_frames:
|
| 192 |
+
img_grads = img_model.forward(face)
|
| 193 |
+
multimodal_grads = multimodal.clf_rgb[0].forward(img_grads)
|
| 194 |
+
|
| 195 |
+
out = nn.Softmax()(multimodal_grads)
|
| 196 |
+
real_grads.append(out.cpu().detach().numpy()[0])
|
| 197 |
+
print(f"Video out tensor shape is: {out.shape}, {out}")
|
| 198 |
+
|
| 199 |
+
fake_grads.append(out.cpu().detach().numpy()[0])
|
| 200 |
+
|
| 201 |
+
real_grads_mean = np.mean(real_grads)
|
| 202 |
+
fake_grads_mean = np.mean(fake_grads)
|
| 203 |
+
|
| 204 |
+
if real_grads_mean > fake_grads_mean:
|
| 205 |
+
res = round(real_grads_mean * 100, 3)
|
| 206 |
+
text = f"The video is REAL."
|
| 207 |
+
else:
|
| 208 |
+
res = round(100 - (real_grads_mean * 100), 3)
|
| 209 |
+
text = f"The video is FAKE."
|
| 210 |
+
return text
|
| 211 |
+
|
inference_2.py
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import onnx
|
| 4 |
+
import torch
|
| 5 |
+
import argparse
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from models.TMC import ETMC
|
| 9 |
+
from models import image
|
| 10 |
+
|
| 11 |
+
from onnx2pytorch import ConvertModel
|
| 12 |
+
|
| 13 |
+
onnx_model = onnx.load('checkpoints/efficientnet.onnx')
|
| 14 |
+
pytorch_model = ConvertModel(onnx_model)
|
| 15 |
+
|
| 16 |
+
#Set random seed for reproducibility.
|
| 17 |
+
torch.manual_seed(42)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Define the audio_args dictionary
|
| 21 |
+
audio_args = {
|
| 22 |
+
'nb_samp': 64600,
|
| 23 |
+
'first_conv': 1024,
|
| 24 |
+
'in_channels': 1,
|
| 25 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
| 26 |
+
'blocks': [2, 4],
|
| 27 |
+
'nb_fc_node': 1024,
|
| 28 |
+
'gru_node': 1024,
|
| 29 |
+
'nb_gru_layer': 3,
|
| 30 |
+
'nb_classes': 2
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_args(parser):
|
| 35 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
| 36 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
| 37 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
| 38 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
| 39 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
| 40 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
| 41 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
| 42 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
| 43 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
| 44 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
| 45 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
| 46 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 47 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
| 48 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
| 49 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
| 50 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
| 51 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
| 52 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
| 53 |
+
parser.add_argument("--patience", type=int, default=20)
|
| 54 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
| 55 |
+
parser.add_argument("--seed", type=int, default=1)
|
| 56 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
| 57 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
| 58 |
+
parser.add_argument("--device", type=str, default='cpu')
|
| 59 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
| 60 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
|
| 61 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
| 62 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
|
| 63 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
| 64 |
+
|
| 65 |
+
for key, value in audio_args.items():
|
| 66 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
| 67 |
+
|
| 68 |
+
def model_summary(args):
|
| 69 |
+
'''Prints the model summary.'''
|
| 70 |
+
model = ETMC(args)
|
| 71 |
+
|
| 72 |
+
for name, layer in model.named_modules():
|
| 73 |
+
print(name, layer)
|
| 74 |
+
|
| 75 |
+
def load_multimodal_model(args):
|
| 76 |
+
'''Load multimodal model'''
|
| 77 |
+
model = ETMC(args)
|
| 78 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
| 79 |
+
model.load_state_dict(ckpt, strict = True)
|
| 80 |
+
model.eval()
|
| 81 |
+
return model
|
| 82 |
+
|
| 83 |
+
def load_img_modality_model(args):
|
| 84 |
+
'''Loads image modality model.'''
|
| 85 |
+
rgb_encoder = pytorch_model
|
| 86 |
+
|
| 87 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
| 88 |
+
rgb_encoder.load_state_dict(ckpt['rgb_encoder'], strict = True)
|
| 89 |
+
rgb_encoder.eval()
|
| 90 |
+
return rgb_encoder
|
| 91 |
+
|
| 92 |
+
def load_spec_modality_model(args):
|
| 93 |
+
spec_encoder = image.RawNet(args)
|
| 94 |
+
ckpt = torch.load('checkpoints/model.pth', map_location = torch.device('cpu'))
|
| 95 |
+
spec_encoder.load_state_dict(ckpt['spec_encoder'], strict = True)
|
| 96 |
+
spec_encoder.eval()
|
| 97 |
+
return spec_encoder
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
#Load models.
|
| 101 |
+
parser = argparse.ArgumentParser(description="Inference models")
|
| 102 |
+
get_args(parser)
|
| 103 |
+
args, remaining_args = parser.parse_known_args()
|
| 104 |
+
assert remaining_args == [], remaining_args
|
| 105 |
+
|
| 106 |
+
spec_model = load_spec_modality_model(args)
|
| 107 |
+
|
| 108 |
+
img_model = load_img_modality_model(args)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def preprocess_img(face):
|
| 112 |
+
face = face / 255
|
| 113 |
+
face = cv2.resize(face, (256, 256))
|
| 114 |
+
# face = face.transpose(2, 0, 1) #(W, H, C) -> (C, W, H)
|
| 115 |
+
face_pt = torch.unsqueeze(torch.Tensor(face), dim = 0)
|
| 116 |
+
return face_pt
|
| 117 |
+
|
| 118 |
+
def preprocess_audio(audio_file):
|
| 119 |
+
audio_pt = torch.unsqueeze(torch.Tensor(audio_file), dim = 0)
|
| 120 |
+
return audio_pt
|
| 121 |
+
|
| 122 |
+
def deepfakes_spec_predict(input_audio):
|
| 123 |
+
x, _ = input_audio
|
| 124 |
+
audio = preprocess_audio(x)
|
| 125 |
+
spec_grads = spec_model.forward(audio)
|
| 126 |
+
spec_grads_inv = np.exp(spec_grads.cpu().detach().numpy().squeeze())
|
| 127 |
+
|
| 128 |
+
# multimodal_grads = multimodal.spec_depth[0].forward(spec_grads)
|
| 129 |
+
|
| 130 |
+
# out = nn.Softmax()(multimodal_grads)
|
| 131 |
+
# max = torch.argmax(out, dim = -1) #Index of the max value in the tensor.
|
| 132 |
+
# max_value = out[max] #Actual value of the tensor.
|
| 133 |
+
max_value = np.argmax(spec_grads_inv)
|
| 134 |
+
|
| 135 |
+
if max_value > 0.5:
|
| 136 |
+
preds = round(100 - (max_value*100), 3)
|
| 137 |
+
text2 = f"The audio is REAL."
|
| 138 |
+
|
| 139 |
+
else:
|
| 140 |
+
preds = round(max_value*100, 3)
|
| 141 |
+
text2 = f"The audio is FAKE."
|
| 142 |
+
|
| 143 |
+
return text2
|
| 144 |
+
|
| 145 |
+
def deepfakes_image_predict(input_image):
|
| 146 |
+
face = preprocess_img(input_image)
|
| 147 |
+
print(f"Face shape is: {face.shape}")
|
| 148 |
+
img_grads = img_model.forward(face)
|
| 149 |
+
img_grads = img_grads.cpu().detach().numpy()
|
| 150 |
+
img_grads_np = np.squeeze(img_grads)
|
| 151 |
+
|
| 152 |
+
if img_grads_np[0] > 0.5:
|
| 153 |
+
preds = round(img_grads_np[0] * 100, 3)
|
| 154 |
+
text2 = f"The image is REAL. \nConfidence score is: {preds}"
|
| 155 |
+
|
| 156 |
+
else:
|
| 157 |
+
preds = round(img_grads_np[1] * 100, 3)
|
| 158 |
+
text2 = f"The image is FAKE. \nConfidence score is: {preds}"
|
| 159 |
+
|
| 160 |
+
return text2
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def preprocess_video(input_video, n_frames = 3):
|
| 164 |
+
v_cap = cv2.VideoCapture(input_video)
|
| 165 |
+
v_len = int(v_cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 166 |
+
|
| 167 |
+
# Pick 'n_frames' evenly spaced frames to sample
|
| 168 |
+
if n_frames is None:
|
| 169 |
+
sample = np.arange(0, v_len)
|
| 170 |
+
else:
|
| 171 |
+
sample = np.linspace(0, v_len - 1, n_frames).astype(int)
|
| 172 |
+
|
| 173 |
+
#Loop through frames.
|
| 174 |
+
frames = []
|
| 175 |
+
for j in range(v_len):
|
| 176 |
+
success = v_cap.grab()
|
| 177 |
+
if j in sample:
|
| 178 |
+
# Load frame
|
| 179 |
+
success, frame = v_cap.retrieve()
|
| 180 |
+
if not success:
|
| 181 |
+
continue
|
| 182 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 183 |
+
frame = preprocess_img(frame)
|
| 184 |
+
frames.append(frame)
|
| 185 |
+
v_cap.release()
|
| 186 |
+
return frames
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def deepfakes_video_predict(input_video):
|
| 190 |
+
'''Perform inference on a video.'''
|
| 191 |
+
video_frames = preprocess_video(input_video)
|
| 192 |
+
real_faces_list = []
|
| 193 |
+
fake_faces_list = []
|
| 194 |
+
|
| 195 |
+
for face in video_frames:
|
| 196 |
+
# face = preprocess_img(face)
|
| 197 |
+
|
| 198 |
+
img_grads = img_model.forward(face)
|
| 199 |
+
img_grads = img_grads.cpu().detach().numpy()
|
| 200 |
+
img_grads_np = np.squeeze(img_grads)
|
| 201 |
+
real_faces_list.append(img_grads_np[0])
|
| 202 |
+
fake_faces_list.append(img_grads_np[1])
|
| 203 |
+
|
| 204 |
+
real_faces_mean = np.mean(real_faces_list)
|
| 205 |
+
fake_faces_mean = np.mean(fake_faces_list)
|
| 206 |
+
|
| 207 |
+
if real_faces_mean > 0.5:
|
| 208 |
+
preds = round(real_faces_mean * 100, 3)
|
| 209 |
+
text2 = f"The video is REAL. \nConfidence score is: {preds}%"
|
| 210 |
+
|
| 211 |
+
else:
|
| 212 |
+
preds = round(fake_faces_mean * 100, 3)
|
| 213 |
+
text2 = f"The video is FAKE. \nConfidence score is: {preds}%"
|
| 214 |
+
|
| 215 |
+
return text2
|
| 216 |
+
|
main.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import argparse
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import tensorflow as tf
|
| 6 |
+
import torch.optim as optim
|
| 7 |
+
|
| 8 |
+
from models.TMC import ETMC, ce_loss
|
| 9 |
+
import torchvision.transforms as transforms
|
| 10 |
+
from data.dfdt_dataset import FakeAVCelebDatasetTrain, FakeAVCelebDatasetVal
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
from utils.utils import *
|
| 14 |
+
from utils.logger import create_logger
|
| 15 |
+
from sklearn.metrics import accuracy_score
|
| 16 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 17 |
+
|
| 18 |
+
# Define the audio_args dictionary
|
| 19 |
+
audio_args = {
|
| 20 |
+
'nb_samp': 64600,
|
| 21 |
+
'first_conv': 1024,
|
| 22 |
+
'in_channels': 1,
|
| 23 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
| 24 |
+
'blocks': [2, 4],
|
| 25 |
+
'nb_fc_node': 1024,
|
| 26 |
+
'gru_node': 1024,
|
| 27 |
+
'nb_gru_layer': 3,
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_args(parser):
|
| 32 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
| 33 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
| 34 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
| 35 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
| 36 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
| 37 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
| 38 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
| 39 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
| 40 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
| 41 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
| 42 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
| 43 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 44 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
| 45 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
| 46 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
| 47 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
| 48 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
| 49 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
| 50 |
+
parser.add_argument("--patience", type=int, default=20)
|
| 51 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
| 52 |
+
parser.add_argument("--seed", type=int, default=1)
|
| 53 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
| 54 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
| 55 |
+
parser.add_argument("--device", type=str, default='cpu')
|
| 56 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
| 57 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = True)
|
| 58 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
| 59 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = True)
|
| 60 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
| 61 |
+
|
| 62 |
+
for key, value in audio_args.items():
|
| 63 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
| 64 |
+
|
| 65 |
+
def get_optimizer(model, args):
|
| 66 |
+
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
|
| 67 |
+
return optimizer
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def get_scheduler(optimizer, args):
|
| 71 |
+
return optim.lr_scheduler.ReduceLROnPlateau(
|
| 72 |
+
optimizer, "max", patience=args.lr_patience, factor=args.lr_factor
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
def model_forward(i_epoch, model, args, ce_loss, batch):
|
| 76 |
+
rgb, spec, tgt = batch['video_reshaped'], batch['spectrogram'], batch['label_map']
|
| 77 |
+
rgb_pt = torch.Tensor(rgb.numpy())
|
| 78 |
+
spec = spec.numpy()
|
| 79 |
+
spec_pt = torch.Tensor(spec)
|
| 80 |
+
tgt_pt = torch.Tensor(tgt.numpy())
|
| 81 |
+
|
| 82 |
+
if torch.cuda.is_available():
|
| 83 |
+
rgb_pt, spec_pt, tgt_pt = rgb_pt.cuda(), spec_pt.cuda(), tgt_pt.cuda()
|
| 84 |
+
|
| 85 |
+
# depth_alpha, rgb_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)
|
| 86 |
+
|
| 87 |
+
# loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
| 88 |
+
# ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
| 89 |
+
# ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
|
| 90 |
+
# return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt
|
| 91 |
+
|
| 92 |
+
depth_alpha, rgb_alpha, pseudo_alpha, depth_rgb_alpha = model(rgb_pt, spec_pt)
|
| 93 |
+
|
| 94 |
+
loss = ce_loss(tgt_pt, depth_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
| 95 |
+
ce_loss(tgt_pt, rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
| 96 |
+
ce_loss(tgt_pt, pseudo_alpha, args.n_classes, i_epoch, args.annealing_epoch) + \
|
| 97 |
+
ce_loss(tgt_pt, depth_rgb_alpha, args.n_classes, i_epoch, args.annealing_epoch)
|
| 98 |
+
return loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt_pt
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def model_eval(i_epoch, data, model, args, criterion):
|
| 103 |
+
model.eval()
|
| 104 |
+
with torch.no_grad():
|
| 105 |
+
losses, depth_preds, rgb_preds, depthrgb_preds, tgts = [], [], [], [], []
|
| 106 |
+
for batch in tqdm(data):
|
| 107 |
+
loss, depth_alpha, rgb_alpha, depth_rgb_alpha, tgt = model_forward(i_epoch, model, args, criterion, batch)
|
| 108 |
+
losses.append(loss.item())
|
| 109 |
+
|
| 110 |
+
depth_pred = depth_alpha.argmax(dim=1).cpu().detach().numpy()
|
| 111 |
+
rgb_pred = rgb_alpha.argmax(dim=1).cpu().detach().numpy()
|
| 112 |
+
depth_rgb_pred = depth_rgb_alpha.argmax(dim=1).cpu().detach().numpy()
|
| 113 |
+
|
| 114 |
+
depth_preds.append(depth_pred)
|
| 115 |
+
rgb_preds.append(rgb_pred)
|
| 116 |
+
depthrgb_preds.append(depth_rgb_pred)
|
| 117 |
+
tgt = tgt.cpu().detach().numpy()
|
| 118 |
+
tgts.append(tgt)
|
| 119 |
+
|
| 120 |
+
metrics = {"loss": np.mean(losses)}
|
| 121 |
+
print(f"Mean loss is: {metrics['loss']}")
|
| 122 |
+
|
| 123 |
+
tgts = [l for sl in tgts for l in sl]
|
| 124 |
+
depth_preds = [l for sl in depth_preds for l in sl]
|
| 125 |
+
rgb_preds = [l for sl in rgb_preds for l in sl]
|
| 126 |
+
depthrgb_preds = [l for sl in depthrgb_preds for l in sl]
|
| 127 |
+
metrics["spec_acc"] = accuracy_score(tgts, depth_preds)
|
| 128 |
+
metrics["rgb_acc"] = accuracy_score(tgts, rgb_preds)
|
| 129 |
+
metrics["specrgb_acc"] = accuracy_score(tgts, depthrgb_preds)
|
| 130 |
+
return metrics
|
| 131 |
+
|
| 132 |
+
def write_weight_histograms(writer, step, model):
|
| 133 |
+
for idx, item in enumerate(model.named_parameters()):
|
| 134 |
+
name = item[0]
|
| 135 |
+
weights = item[1].data
|
| 136 |
+
if weights.size(dim = 0) > 2:
|
| 137 |
+
try:
|
| 138 |
+
writer.add_histogram(name, weights, idx)
|
| 139 |
+
except ValueError as e:
|
| 140 |
+
continue
|
| 141 |
+
|
| 142 |
+
writer = SummaryWriter()
|
| 143 |
+
|
| 144 |
+
def train(args):
|
| 145 |
+
set_seed(args.seed)
|
| 146 |
+
args.savedir = os.path.join(args.savedir, args.name)
|
| 147 |
+
os.makedirs(args.savedir, exist_ok=True)
|
| 148 |
+
|
| 149 |
+
train_ds = FakeAVCelebDatasetTrain(args)
|
| 150 |
+
train_ds = train_ds.load_features_from_tfrec()
|
| 151 |
+
|
| 152 |
+
val_ds = FakeAVCelebDatasetVal(args)
|
| 153 |
+
val_ds = val_ds.load_features_from_tfrec()
|
| 154 |
+
|
| 155 |
+
model = ETMC(args)
|
| 156 |
+
optimizer = get_optimizer(model, args)
|
| 157 |
+
scheduler = get_scheduler(optimizer, args)
|
| 158 |
+
logger = create_logger("%s/logfile.log" % args.savedir, args)
|
| 159 |
+
if torch.cuda.is_available():
|
| 160 |
+
model.cuda()
|
| 161 |
+
|
| 162 |
+
torch.save(args, os.path.join(args.savedir, "checkpoint.pt"))
|
| 163 |
+
start_epoch, global_step, n_no_improve, best_metric = 0, 0, 0, -np.inf
|
| 164 |
+
|
| 165 |
+
for i_epoch in range(start_epoch, args.max_epochs):
|
| 166 |
+
train_losses = []
|
| 167 |
+
model.train()
|
| 168 |
+
optimizer.zero_grad()
|
| 169 |
+
|
| 170 |
+
for index, batch in tqdm(enumerate(train_ds)):
|
| 171 |
+
loss, depth_out, rgb_out, depthrgb, tgt = model_forward(i_epoch, model, args, ce_loss, batch)
|
| 172 |
+
if args.gradient_accumulation_steps > 1:
|
| 173 |
+
loss = loss / args.gradient_accumulation_steps
|
| 174 |
+
|
| 175 |
+
train_losses.append(loss.item())
|
| 176 |
+
loss.backward()
|
| 177 |
+
global_step += 1
|
| 178 |
+
if global_step % args.gradient_accumulation_steps == 0:
|
| 179 |
+
optimizer.step()
|
| 180 |
+
optimizer.zero_grad()
|
| 181 |
+
|
| 182 |
+
#Write weight histograms to Tensorboard.
|
| 183 |
+
write_weight_histograms(writer, i_epoch, model)
|
| 184 |
+
|
| 185 |
+
model.eval()
|
| 186 |
+
metrics = model_eval(
|
| 187 |
+
np.inf, val_ds, model, args, ce_loss
|
| 188 |
+
)
|
| 189 |
+
logger.info("Train Loss: {:.4f}".format(np.mean(train_losses)))
|
| 190 |
+
log_metrics("val", metrics, logger)
|
| 191 |
+
logger.info(
|
| 192 |
+
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
|
| 193 |
+
"val", metrics["loss"], metrics["spec_acc"], metrics["rgb_acc"], metrics["specrgb_acc"]
|
| 194 |
+
)
|
| 195 |
+
)
|
| 196 |
+
tuning_metric = metrics["specrgb_acc"]
|
| 197 |
+
|
| 198 |
+
scheduler.step(tuning_metric)
|
| 199 |
+
is_improvement = tuning_metric > best_metric
|
| 200 |
+
if is_improvement:
|
| 201 |
+
best_metric = tuning_metric
|
| 202 |
+
n_no_improve = 0
|
| 203 |
+
else:
|
| 204 |
+
n_no_improve += 1
|
| 205 |
+
|
| 206 |
+
save_checkpoint(
|
| 207 |
+
{
|
| 208 |
+
"epoch": i_epoch + 1,
|
| 209 |
+
"optimizer": optimizer.state_dict(),
|
| 210 |
+
"scheduler": scheduler.state_dict(),
|
| 211 |
+
"n_no_improve": n_no_improve,
|
| 212 |
+
"best_metric": best_metric,
|
| 213 |
+
},
|
| 214 |
+
is_improvement,
|
| 215 |
+
args.savedir,
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
if n_no_improve >= args.patience:
|
| 219 |
+
logger.info("No improvement. Breaking out of loop.")
|
| 220 |
+
break
|
| 221 |
+
writer.close()
|
| 222 |
+
# load_checkpoint(model, os.path.join(args.savedir, "model_best.pt"))
|
| 223 |
+
model.eval()
|
| 224 |
+
test_metrics = model_eval(
|
| 225 |
+
np.inf, val_ds, model, args, ce_loss
|
| 226 |
+
)
|
| 227 |
+
logger.info(
|
| 228 |
+
"{}: Loss: {:.5f} | spec_acc: {:.5f}, rgb_acc: {:.5f}, depth rgb acc: {:.5f}".format(
|
| 229 |
+
"Test", test_metrics["loss"], test_metrics["spec_acc"], test_metrics["rgb_acc"],
|
| 230 |
+
test_metrics["depthrgb_acc"]
|
| 231 |
+
)
|
| 232 |
+
)
|
| 233 |
+
log_metrics(f"Test", test_metrics, logger)
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def cli_main():
|
| 237 |
+
parser = argparse.ArgumentParser(description="Train Models")
|
| 238 |
+
get_args(parser)
|
| 239 |
+
args, remaining_args = parser.parse_known_args()
|
| 240 |
+
assert remaining_args == [], remaining_args
|
| 241 |
+
train(args)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
if __name__ == "__main__":
|
| 245 |
+
import warnings
|
| 246 |
+
warnings.filterwarnings("ignore")
|
| 247 |
+
cli_main()
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
wget
|
| 2 |
+
timm
|
| 3 |
+
torch
|
| 4 |
+
tensorflow
|
| 5 |
+
moviepy
|
| 6 |
+
librosa
|
| 7 |
+
ffmpeg
|
| 8 |
+
albumentations
|
| 9 |
+
opencv-python
|
| 10 |
+
torchsummary
|
| 11 |
+
onnx
|
| 12 |
+
onnx2pytorch
|
save_ckpts.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import onnx
|
| 2 |
+
import torch
|
| 3 |
+
import argparse
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from models.TMC import ETMC
|
| 7 |
+
from models import image
|
| 8 |
+
from onnx2pytorch import ConvertModel
|
| 9 |
+
|
| 10 |
+
onnx_model = onnx.load('checkpoints\\efficientnet.onnx')
|
| 11 |
+
pytorch_model = ConvertModel(onnx_model)
|
| 12 |
+
|
| 13 |
+
# Define the audio_args dictionary
|
| 14 |
+
audio_args = {
|
| 15 |
+
'nb_samp': 64600,
|
| 16 |
+
'first_conv': 1024,
|
| 17 |
+
'in_channels': 1,
|
| 18 |
+
'filts': [20, [20, 20], [20, 128], [128, 128]],
|
| 19 |
+
'blocks': [2, 4],
|
| 20 |
+
'nb_fc_node': 1024,
|
| 21 |
+
'gru_node': 1024,
|
| 22 |
+
'nb_gru_layer': 3,
|
| 23 |
+
'nb_classes': 2
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_args(parser):
|
| 28 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
| 29 |
+
parser.add_argument("--data_dir", type=str, default="datasets/train/fakeavceleb*")
|
| 30 |
+
parser.add_argument("--LOAD_SIZE", type=int, default=256)
|
| 31 |
+
parser.add_argument("--FINE_SIZE", type=int, default=224)
|
| 32 |
+
parser.add_argument("--dropout", type=float, default=0.2)
|
| 33 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
| 34 |
+
parser.add_argument("--hidden", nargs="*", type=int, default=[])
|
| 35 |
+
parser.add_argument("--hidden_sz", type=int, default=768)
|
| 36 |
+
parser.add_argument("--img_embed_pool_type", type=str, default="avg", choices=["max", "avg"])
|
| 37 |
+
parser.add_argument("--img_hidden_sz", type=int, default=1024)
|
| 38 |
+
parser.add_argument("--include_bn", type=int, default=True)
|
| 39 |
+
parser.add_argument("--lr", type=float, default=1e-4)
|
| 40 |
+
parser.add_argument("--lr_factor", type=float, default=0.3)
|
| 41 |
+
parser.add_argument("--lr_patience", type=int, default=10)
|
| 42 |
+
parser.add_argument("--max_epochs", type=int, default=500)
|
| 43 |
+
parser.add_argument("--n_workers", type=int, default=12)
|
| 44 |
+
parser.add_argument("--name", type=str, default="MMDF")
|
| 45 |
+
parser.add_argument("--num_image_embeds", type=int, default=1)
|
| 46 |
+
parser.add_argument("--patience", type=int, default=20)
|
| 47 |
+
parser.add_argument("--savedir", type=str, default="./savepath/")
|
| 48 |
+
parser.add_argument("--seed", type=int, default=1)
|
| 49 |
+
parser.add_argument("--n_classes", type=int, default=2)
|
| 50 |
+
parser.add_argument("--annealing_epoch", type=int, default=10)
|
| 51 |
+
parser.add_argument("--device", type=str, default='cpu')
|
| 52 |
+
parser.add_argument("--pretrained_image_encoder", type=bool, default = False)
|
| 53 |
+
parser.add_argument("--freeze_image_encoder", type=bool, default = False)
|
| 54 |
+
parser.add_argument("--pretrained_audio_encoder", type = bool, default=False)
|
| 55 |
+
parser.add_argument("--freeze_audio_encoder", type = bool, default = False)
|
| 56 |
+
parser.add_argument("--augment_dataset", type = bool, default = True)
|
| 57 |
+
|
| 58 |
+
for key, value in audio_args.items():
|
| 59 |
+
parser.add_argument(f"--{key}", type=type(value), default=value)
|
| 60 |
+
|
| 61 |
+
def load_spec_modality_model(args):
|
| 62 |
+
spec_encoder = image.RawNet(args)
|
| 63 |
+
ckpt = torch.load('checkpoints\RawNet2.pth', map_location = torch.device('cpu'))
|
| 64 |
+
spec_encoder.load_state_dict(ckpt, strict = True)
|
| 65 |
+
spec_encoder.eval()
|
| 66 |
+
return spec_encoder
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
#Load models.
|
| 70 |
+
parser = argparse.ArgumentParser(description="Train Models")
|
| 71 |
+
get_args(parser)
|
| 72 |
+
args, remaining_args = parser.parse_known_args()
|
| 73 |
+
assert remaining_args == [], remaining_args
|
| 74 |
+
|
| 75 |
+
spec_model = load_spec_modality_model(args)
|
| 76 |
+
|
| 77 |
+
print(f"Image model is: {pytorch_model}")
|
| 78 |
+
|
| 79 |
+
print(f"Audio model is: {spec_model}")
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
PATH = 'checkpoints\\model.pth'
|
| 83 |
+
|
| 84 |
+
torch.save({
|
| 85 |
+
'spec_encoder': spec_model.state_dict(),
|
| 86 |
+
'rgb_encoder': pytorch_model.state_dict()
|
| 87 |
+
}, PATH)
|
| 88 |
+
|
| 89 |
+
print("Model saved.")
|