|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-base-p2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: story_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# story_model |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2576 |
|
- Accuracy: 0.9409 |
|
- F1: 0.9622 |
|
- Precision: 0.9929 |
|
- Recall: 0.9333 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 94 | 0.3243 | 0.8817 | 0.9308 | 0.8810 | 0.9867 | |
|
| No log | 2.0 | 188 | 0.2781 | 0.8925 | 0.9363 | 0.8963 | 0.98 | |
|
| No log | 3.0 | 282 | 0.2576 | 0.9409 | 0.9622 | 0.9929 | 0.9333 | |
|
| No log | 4.0 | 376 | 0.3482 | 0.9247 | 0.9545 | 0.9304 | 0.98 | |
|
| No log | 5.0 | 470 | 0.3785 | 0.9301 | 0.9574 | 0.9419 | 0.9733 | |
|
| 0.1516 | 6.0 | 564 | 0.4252 | 0.9140 | 0.9467 | 0.9467 | 0.9467 | |
|
| 0.1516 | 7.0 | 658 | 0.5097 | 0.9086 | 0.9428 | 0.9524 | 0.9333 | |
|
| 0.1516 | 8.0 | 752 | 0.5036 | 0.9086 | 0.9431 | 0.9463 | 0.94 | |
|
| 0.1516 | 9.0 | 846 | 0.5268 | 0.9086 | 0.9439 | 0.9346 | 0.9533 | |
|
| 0.1516 | 10.0 | 940 | 0.5314 | 0.9086 | 0.9439 | 0.9346 | 0.9533 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|