|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-base-p2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: sentiment_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# sentiment_model |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1665 |
|
- Accuracy: 0.9720 |
|
- F1: 0.9259 |
|
- Precision: 0.9615 |
|
- Recall: 0.8929 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 72 | 0.2060 | 0.9510 | 0.8727 | 0.8889 | 0.8571 | |
|
| No log | 2.0 | 144 | 0.2337 | 0.9580 | 0.8846 | 0.9583 | 0.8214 | |
|
| No log | 3.0 | 216 | 0.2416 | 0.9441 | 0.8571 | 0.8571 | 0.8571 | |
|
| No log | 4.0 | 288 | 0.1905 | 0.9580 | 0.8846 | 0.9583 | 0.8214 | |
|
| No log | 5.0 | 360 | 0.2029 | 0.9580 | 0.8929 | 0.8929 | 0.8929 | |
|
| No log | 6.0 | 432 | 0.1665 | 0.9720 | 0.9259 | 0.9615 | 0.8929 | |
|
| 0.0706 | 7.0 | 504 | 0.1899 | 0.9580 | 0.8889 | 0.9231 | 0.8571 | |
|
| 0.0706 | 8.0 | 576 | 0.1990 | 0.9580 | 0.8889 | 0.9231 | 0.8571 | |
|
| 0.0706 | 9.0 | 648 | 0.2139 | 0.9580 | 0.8889 | 0.9231 | 0.8571 | |
|
| 0.0706 | 10.0 | 720 | 0.2171 | 0.9580 | 0.8889 | 0.9231 | 0.8571 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|