Hindi Sentence Embeddings Model

This is a custom state-of-the-art sentence embedding model trained specifically for Hindi text. It leverages an advanced transformer architecture with specialized pooling strategies to create high-quality semantic representations of Hindi sentences.

Features

  • Specialized for Hindi language text
  • Advanced transformer architecture with optimized attention mechanism
  • Multiple pooling strategies for enhanced semantic representations
  • Creates normalized vector representations for semantic similarity
  • Supports semantic search and text similarity applications

Usage

Installation

pip install torch sentencepiece scikit-learn matplotlib
git lfs install 
git clone https://huggingface.co/DeepMostInnovations/hindi-embedding-foundational-model
cd hindi-embedding-foundational-model

Enhanced RAG System

This model now includes an enhanced RAG (Retrieval Augmented Generation) system that integrates Unsloth's optimized Llama-3.2-1B-Instruct model for question answering on top of Hindi document retrieval.

Setup and Installation

  1. Install additional dependencies:
pip install unsloth transformers bitsandbytes accelerate langchain langchain-community faiss-cpu
  1. Index your documents:
python hindi-rag-system.py --model_dir /path/to/your/model --tokenizer_dir /path/to/tokenizer --data_dir ./data --output_dir ./output --index
  1. Run in QA mode with LLM:
python hindi-rag-system.py --model_dir /path/to/your/model --tokenizer_dir /path/to/tokenizer --output_dir ./output --interactive --qa

Basic Embedding Usage

from hindi_embeddings import HindiEmbedder

# Initialize the embedder
model = HindiEmbedder("path/to/hindi-embedding-foundational-model")

# Encode sentences to embeddings
sentences = [
    "मुझे हिंदी भाषा बहुत पसंद है।",
    "मैं हिंदी भाषा सीख रहा हूँ।"
]
embeddings = model.encode(sentences)
print(f"Embedding shape: {embeddings.shape}")

# Compute similarity between sentences
similarity = model.compute_similarity(sentences[0], sentences[1])
print(f"Similarity: {similarity:.4f}")

# Perform semantic search
query = "भारत की राजधानी"
documents = [
    "दिल्ली भारत की राजधानी है।",
    "मुंबई भारत का सबसे बड़ा शहर है।",
    "हिमालय पर्वत भारत के उत्तर में स्थित है।"
]
results = model.search(query, documents)
for i, result in enumerate(results):
    print(f"{i+1}. Score: {result['score']:.4f}")
    print(f"   Document: {result['document']}")

# Visualize embeddings
example_sentences = [
    "मुझे हिंदी में पढ़ना बहुत पसंद है।",
    "आज मौसम बहुत अच्छा है।",
    "भारत एक विशाल देश है।"
]
model.visualize_embeddings(example_sentences)

Model Details

This model uses an advanced transformer-based architecture with the following enhancements:

  • Pre-layer normalization for stable training
  • Specialized attention mechanism with relative positional encoding
  • Multiple pooling strategies (weighted, mean, attention-based)
  • L2-normalized vectors for cosine similarity

Technical specifications:

  • Embedding dimension: 768
  • Hidden dimension: 768
  • Layers: 12
  • Attention heads: 12
  • Vocabulary size: 50,000
  • Context length: 128 tokens

Applications

  • Semantic search and information retrieval
  • Text clustering and categorization
  • Recommendation systems
  • Question answering
  • Document similarity comparison
  • Content-based filtering
  • RAG systems for Hindi language content

License

This model is released under the MIT License.

Citation

If you use this model in your research or application, please cite us:

@misc{DeepMostInnovations2025hindi,
  author = {DeepMost Innovations},
  title = {Hindi Sentence Embeddings Model},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/DeepMostInnovations/hindi-embedding-foundational-model}}
}
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support sentence-similarity models for transformers library.