SUONG-3 / README.md
Davidsv's picture
Update README.md
003c9e7 verified
---
license: apache-2.0
base_model:
- OpenPipe/mistral-ft-optimized-1218
- mlabonne/NeuralHermes-2.5-Mistral-7B
tags:
- merge
- mergekit
- lazymergekit
- mistral
- optimized
---
# NeuralPipe-7B-slerp
This is a merge of pre-trained language models created using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing), combining the capabilities of OpenPipe's optimized Mistral and NeuralHermes through an efficient SLERP fusion.
## About Me
I'm David Soeiro-Vuong, a third-year Computer Science student working as an apprentice at TW3 Partners, a company specialized in Generative AI. Passionate about artificial intelligence and language models optimization, I focus on creating efficient model merges that balance performance and capabilities.
๐Ÿ”— [Connect with me on LinkedIn](https://www.linkedin.com/in/david-soeiro-vuong-a28b582ba/)
## Merge Details
### Merge Method
This model uses SLERP (Spherical Linear Interpolation) with carefully tuned parameters:
- Optimized attention layer fusion patterns
- Balanced MLP layer transitions
- bfloat16 format for efficient memory usage
- Full layer utilization for maximum capability retention
### Models Merged
* [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218)
* [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B)
### Configuration
```yaml
slices:
- sources:
- model: OpenPipe/mistral-ft-optimized-1218
layer_range: [0, 32]
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16