bge-large-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-large-en-v1.5 on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-large-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: mit
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
matryoshka_dims = [1024,768,512,256,128,64]
model = SentenceTransformer("DannyAI/embedding_fine_tuning_adaptive_layer_matryoshka2dloss_bge_large_en_v1.5",
truncate_dim=matryoshka_dims[0])
sentences = [
'Young boy kicks a soccer ball towards the goal as the crowd watches.',
'The boy is under the age of eighteen.',
'The boy is alone in his backyard.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Triplet
- Datasets:
all-nli-val-1024 and all-nli-test-1024
- Evaluated with
TripletEvaluator with these parameters:{
"truncate_dim": 1024
}
| Metric |
all-nli-val-1024 |
all-nli-test-1024 |
| cosine_accuracy |
0.9507 |
0.9532 |
Triplet
- Datasets:
all-nli-val-768 and all-nli-test-768
- Evaluated with
TripletEvaluator with these parameters:{
"truncate_dim": 768
}
| Metric |
all-nli-val-768 |
all-nli-test-768 |
| cosine_accuracy |
0.9497 |
0.9516 |
Triplet
- Datasets:
all-nli-val-512 and all-nli-test-512
- Evaluated with
TripletEvaluator with these parameters:{
"truncate_dim": 512
}
| Metric |
all-nli-val-512 |
all-nli-test-512 |
| cosine_accuracy |
0.9477 |
0.9504 |
Triplet
- Datasets:
all-nli-val-256 and all-nli-test-256
- Evaluated with
TripletEvaluator with these parameters:{
"truncate_dim": 256
}
| Metric |
all-nli-val-256 |
all-nli-test-256 |
| cosine_accuracy |
0.9453 |
0.9493 |
Triplet
- Datasets:
all-nli-val-128 and all-nli-test-128
- Evaluated with
TripletEvaluator with these parameters:{
"truncate_dim": 128
}
| Metric |
all-nli-val-128 |
all-nli-test-128 |
| cosine_accuracy |
0.9393 |
0.9452 |
Triplet
- Datasets:
all-nli-val-64 and all-nli-test-64
- Evaluated with
TripletEvaluator with these parameters:{
"truncate_dim": 64
}
| Metric |
all-nli-val-64 |
all-nli-test-64 |
| cosine_accuracy |
0.931 |
0.9363 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 200,000 training samples
- Columns:
anchor, positive, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
| type |
string |
string |
string |
| details |
- min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
|
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
|
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
|
- Samples:
| anchor |
positive |
negative |
A person on a horse jumps over a broken down airplane. |
A person is outdoors, on a horse. |
A person is at a diner, ordering an omelette. |
Children smiling and waving at camera |
There are children present |
The kids are frowning |
A boy is jumping on skateboard in the middle of a red bridge. |
The boy does a skateboarding trick. |
The boy skates down the sidewalk. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 3,000 evaluation samples
- Columns:
anchor, positive, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
| type |
string |
string |
string |
| details |
- min: 6 tokens
- mean: 17.95 tokens
- max: 63 tokens
|
- min: 4 tokens
- mean: 9.78 tokens
- max: 29 tokens
|
- min: 5 tokens
- mean: 10.35 tokens
- max: 29 tokens
|
- Samples:
| anchor |
positive |
negative |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
The men are fighting outside a deli. |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
Two kids in numbered jerseys wash their hands. |
Two kids in jackets walk to school. |
A man selling donuts to a customer during a world exhibition event held in the city of Angeles |
A man selling donuts to a customer. |
A woman drinks her coffee in a small cafe. |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 5
per_device_eval_batch_size: 5
learning_rate: 2e-05
max_steps: 100
warmup_ratio: 0.1
seed: 30
bf16: True
load_best_model_at_end: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 5
per_device_eval_batch_size: 5
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3.0
max_steps: 100
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 30
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch_fused
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
all-nli-val-1024_cosine_accuracy |
all-nli-val-768_cosine_accuracy |
all-nli-val-512_cosine_accuracy |
all-nli-val-256_cosine_accuracy |
all-nli-val-128_cosine_accuracy |
all-nli-val-64_cosine_accuracy |
all-nli-test-1024_cosine_accuracy |
all-nli-test-768_cosine_accuracy |
all-nli-test-512_cosine_accuracy |
all-nli-test-256_cosine_accuracy |
all-nli-test-128_cosine_accuracy |
all-nli-test-64_cosine_accuracy |
| 0.0025 |
100 |
2.4168 |
1.292 |
0.9507 |
0.9497 |
0.9477 |
0.9453 |
0.9393 |
0.931 |
- |
- |
- |
- |
- |
- |
| -1 |
-1 |
- |
- |
- |
- |
- |
- |
- |
- |
0.9532 |
0.9516 |
0.9504 |
0.9493 |
0.9452 |
0.9363 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}