my_awesome_wnut_model
This model is a fine-tuned version of answerdotai/ModernBERT-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5795
 - Precision: 0.2438
 - Recall: 0.6759
 - F1: 0.3583
 - Accuracy: 0.8634
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 8
 - eval_batch_size: 8
 - seed: 42
 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: linear
 - lr_scheduler_warmup_steps: 10
 - num_epochs: 50
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | 
|---|---|---|---|---|---|---|---|
| 1.5943 | 1.0 | 38 | 0.3653 | 0.1156 | 0.6069 | 0.1943 | 0.8489 | 
| 1.5943 | 2.0 | 76 | 0.3859 | 0.2032 | 0.7034 | 0.3153 | 0.8691 | 
| 0.2445 | 3.0 | 114 | 0.4085 | 0.2422 | 0.8069 | 0.3726 | 0.8679 | 
| 0.2445 | 4.0 | 152 | 0.3778 | 0.2013 | 0.6345 | 0.3056 | 0.8733 | 
| 0.2445 | 5.0 | 190 | 0.4417 | 0.2010 | 0.5448 | 0.2937 | 0.8755 | 
| 0.0861 | 6.0 | 228 | 0.5795 | 0.2438 | 0.6759 | 0.3583 | 0.8634 | 
Framework versions
- Transformers 4.53.2
 - Pytorch 2.7.1+cu126
 - Datasets 4.0.0
 - Tokenizers 0.21.2
 
- Downloads last month
 - 1
 
Model tree for Corran/my_awesome_wnut_model
Base model
answerdotai/ModernBERT-large