hawei's picture
Add library name, pipeline tag, and link to paper (#1)
f2c2ff4 verified
---
license: llama3.1
datasets:
- nvidia/OpenMathInstruct-2
language:
- en
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-8B-Instruct
model-index:
- name: Control-LLM-Llama3.1-8B-Math16
results:
- task:
type: math-evaluation
dataset:
type: parquet
name: Math, Math Hard, GSM8K
dataset_kwargs:
data_files: "https://github.com/linkedin/ControlLLM/blob/main/src/controlllm/inference/llm_eval_harness/additional_tasks/math/joined_math.parquet"
metrics:
- name: exact_match,none
type: exact_match
value: 0.6327358367133324
stderr: 0.0052245703347459605
verified: false
- name: exact_match,none (gsm8k_0shot_instruct)
type: exact_match
value: 0.9052312357846853
stderr: 0.008067791560015407
verified: false
- name: exact_match,none (meta_math_0shot_instruct)
type: exact_match
value: 0.6276
stderr: 0.006837616441401548
verified: false
- name: exact_match,none (meta_math_hard_0shot_instruct)
type: exact_match
value: 0.3806646525679758
stderr: 0.013349170720370741
verified: false
- task:
type: original-capability
dataset:
type: meta/Llama-3.1-8B-Instruct-evals
name: Llama-3.1-8B-Instruct-evals Dataset
dataset_path: "meta-llama/llama-3.1-8_b-instruct-evals"
dataset_name: "Llama-3.1-8B-Instruct-evals__arc_challenge__details"
metrics:
- name: exact_match,strict-match
type: exact_match
value: 0.5723263625528227
stderr: 0.002858377993520894
verified: false
- name: exact_match,strict-match (meta_arc_0shot_instruct)
type: exact_match
value: 0.7974248927038626
stderr: 0.01178043813618557
verified: false
- name: exact_match,strict-match (meta_gpqa_0shot_cot_instruct)
type: exact_match
value: 0.25223214285714285
stderr: 0.02054139101648797
verified: false
- name: exact_match,strict-match (meta_mmlu_0shot_instruct)
type: exact_match
value: 0.6837345107534539
stderr: 0.0039243761987253515
verified: false
- name: exact_match,strict-match (meta_mmlu_pro_5shot_instruct)
type: exact_match
value: 0.4324301861702128
stderr: 0.004516653585262379
verified: false
pipeline_tag: text-generation
library_name: transformers
---
# Control-LLM-Llama3.1-8B-Math16
This is a fine-tuned model of Llama-3.1-8B-Instruct for mathematical tasks on OpenMath2 dataset, as described in the paper [Control LLM: Controlled Evolution for Intelligence Retention in LLM](https://huggingface.co/papers/2501.10979).
## Linked Paper
This model is associated with the paper: [Control-LLM](https://arxiv.org/abs/2501.10979).
## Linked Open Source code - training, eval and benchmark
This model is associated with the github: [Control-LLM](https://github.com/linkedin/ControlLLM).
## Evaluation Results
Here is an overview of the evaluation results and findings:
### Benchmark Result and Catastrophic Forgetting on OpenMath
The following plot illustrates benchmark result and catastrophic forgetting mitigation on the OpenMath2 dataset.
![Catastrophic Forgetting](plots/catastrophic_forgetting_openmath.png)
### Alignment Comparison
The plot below highlights the alignment comparison of the model trained with Control LLM and Full Parameter Tuning.
![Alignment Comparison](plots/alignment_comparison.png)
### Benchmark Results Table
The table below summarizes evaluation results across mathematical tasks and original capabilities.
| **Model** | **MH** | **M** | **G8K** | **M-Avg** | **ARC** | **GPQA** | **MLU** | **MLUP** | **O-Avg** | **Overall** |
|-------------------|--------|--------|---------|-----------|---------|----------|---------|----------|-----------|-------------|
| Llama3.1-8B-Inst | 23.7 | 50.9 | 85.6 | 52.1 | 83.4 | 29.9 | 72.4 | 46.7 | 60.5 | 56.3 |
| OpenMath2-Llama3 | 38.4 | 64.1 | 90.3 | 64.3 | 45.8 | 1.3 | 4.5 | 19.5 | 12.9 | 38.6 |
| **Full Tune** | **38.5**| **63.7**| 90.2 | **63.9** | 58.2 | 1.1 | 7.3 | 23.5 | 16.5 | 40.1 |
| Partial Tune | 36.4 | 61.4 | 89.0 | 61.8 | 66.2 | 6.0 | 25.7 | 30.9 | 29.3 | 45.6 |
| Stack Exp. | 35.6 | 61.0 | 90.8 | 61.8 | 69.3 | 18.8 | 61.8 | 43.1 | 53.3 | 57.6 |
| Hybrid Exp. | 34.4 | 61.1 | 90.1 | 61.5 | **81.8**| **25.9** | 67.2 | **43.9** | 57.1 | 59.3 |
| **Control LLM*** | 38.1 | 62.7 | **90.4**| 63.2 | 79.7 | 25.2 | **68.1**| 43.6 | **57.2** | **60.2** |
---
### Explanation:
- **MH**: MathHard
- **M**: Math
- **G8K**: GSM8K
- **M-Avg**: Math - Average across MathHard, Math, and GSM8K
- **ARC**: ARC benchmark
- **GPQA**: General knowledge QA
- **MLU**: MMLU (Massive Multitask Language Understanding)
- **MLUP**: MMLU Pro
- **O-Avg**: Orginal Capability - Average across ARC, GPQA, MMLU, and MMLUP
- **Overall**: Combined average across all tasks