CodyBontecou commited on
Commit
f992a7f
·
1 Parent(s): 5b6527d

letting windsurf handle it

Browse files
Files changed (2) hide show
  1. handler.py +122 -21
  2. requirements.txt +5 -0
handler.py CHANGED
@@ -1,10 +1,20 @@
1
- from typing import Dict, List, Any
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
 
 
 
 
4
 
5
 
6
  class EndpointHandler:
7
  def __init__(self, path=""):
 
 
 
 
 
 
8
  # Load model with half precision to save memory
9
  self.model = AutoModelForCausalLM.from_pretrained(
10
  path, torch_dtype=torch.float16, device_map="auto"
@@ -13,6 +23,9 @@ class EndpointHandler:
13
  # Load tokenizer
14
  self.tokenizer = AutoTokenizer.from_pretrained(path)
15
 
 
 
 
16
  # Ensure pad token is properly set
17
  if self.tokenizer.pad_token_id is None:
18
  if (
@@ -28,15 +41,52 @@ class EndpointHandler:
28
 
29
  print(f"Model loaded successfully. Pad token ID: {self.tokenizer.pad_token_id}")
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]:
32
  """Handle inference requests"""
33
  # Extract inputs and parameters from request data
34
  inputs = data.pop("inputs", data)
35
  parameters = data.pop("parameters", {})
36
 
37
- # Convert single string input to list for consistent handling
38
- if isinstance(inputs, str):
39
- inputs = [inputs]
40
 
41
  # Extract generation parameters with sensible defaults
42
  max_new_tokens = parameters.get("max_new_tokens", 256)
@@ -44,24 +94,75 @@ class EndpointHandler:
44
  top_p = parameters.get("top_p", 0.95)
45
  do_sample = parameters.get("do_sample", True)
46
 
47
- # Tokenize inputs
48
- input_tokens = self.tokenizer(inputs, return_tensors="pt", padding=True).to(
49
- self.model.device
50
- )
51
 
52
- # Generate text
53
- with torch.no_grad():
54
- outputs = self.model.generate(
55
- **input_tokens,
56
- max_new_tokens=max_new_tokens,
57
- temperature=temperature,
58
- top_p=top_p,
59
- do_sample=do_sample,
60
- pad_token_id=self.tokenizer.pad_token_id,
61
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- # Decode generated text
64
- generated_texts = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
 
 
 
65
 
66
  # Return results in expected format
67
  return {"generated_text": generated_texts}
 
1
+ from typing import Dict, List, Any, Optional, Union
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoProcessor
3
  import torch
4
+ import base64
5
+ from io import BytesIO
6
+ from PIL import Image
7
+ import requests
8
 
9
 
10
  class EndpointHandler:
11
  def __init__(self, path=""):
12
+ # If path is empty, use the GSAI-ML/LLaDA-8B-Instruct model
13
+ if not path:
14
+ path = "GSAI-ML/LLaDA-8B-Instruct"
15
+
16
+ print(f"Loading model from {path}...")
17
+
18
  # Load model with half precision to save memory
19
  self.model = AutoModelForCausalLM.from_pretrained(
20
  path, torch_dtype=torch.float16, device_map="auto"
 
23
  # Load tokenizer
24
  self.tokenizer = AutoTokenizer.from_pretrained(path)
25
 
26
+ # Load processor for handling images
27
+ self.processor = AutoProcessor.from_pretrained(path)
28
+
29
  # Ensure pad token is properly set
30
  if self.tokenizer.pad_token_id is None:
31
  if (
 
41
 
42
  print(f"Model loaded successfully. Pad token ID: {self.tokenizer.pad_token_id}")
43
 
44
+ def _load_image(self, image_data: Union[str, bytes]) -> Image.Image:
45
+ """Load image from URL or base64 encoded string"""
46
+ if isinstance(image_data, str):
47
+ if image_data.startswith("http"):
48
+ # Load from URL
49
+ response = requests.get(image_data, stream=True)
50
+ response.raise_for_status()
51
+ return Image.open(BytesIO(response.content))
52
+ elif image_data.startswith("data:image"):
53
+ # Handle base64 encoded image
54
+ base64_data = image_data.split(",")[1]
55
+ image_bytes = base64.b64decode(base64_data)
56
+ return Image.open(BytesIO(image_bytes))
57
+ else:
58
+ # Assume it's a base64 string without the prefix
59
+ try:
60
+ image_bytes = base64.b64decode(image_data)
61
+ return Image.open(BytesIO(image_bytes))
62
+ except Exception as e:
63
+ raise ValueError(f"Invalid image data format: {e}")
64
+ elif isinstance(image_data, bytes):
65
+ return Image.open(BytesIO(image_data))
66
+ else:
67
+ raise ValueError(f"Unsupported image data type: {type(image_data)}")
68
+
69
+ def _format_prompt(self, text: str, system_prompt: Optional[str] = None) -> str:
70
+ """Format the prompt according to LLaDA's expected format"""
71
+ # Default system prompt for LLaDA if none provided
72
+ if system_prompt is None:
73
+ system_prompt = (
74
+ "You are a helpful AI assistant that can understand images and text."
75
+ )
76
+
77
+ # Format the prompt following LLaDA's expected structure
78
+ formatted_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{text}<|im_end|>\n<|im_start|>assistant\n"
79
+ return formatted_prompt
80
+
81
  def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]:
82
  """Handle inference requests"""
83
  # Extract inputs and parameters from request data
84
  inputs = data.pop("inputs", data)
85
  parameters = data.pop("parameters", {})
86
 
87
+ # Extract image data if present
88
+ image_data = parameters.get("image", None)
89
+ system_prompt = parameters.get("system_prompt", None)
90
 
91
  # Extract generation parameters with sensible defaults
92
  max_new_tokens = parameters.get("max_new_tokens", 256)
 
94
  top_p = parameters.get("top_p", 0.95)
95
  do_sample = parameters.get("do_sample", True)
96
 
97
+ # Convert single string input to list for consistent handling
98
+ if isinstance(inputs, str):
99
+ inputs = [inputs]
 
100
 
101
+ # Process each input
102
+ generated_texts = []
103
+ for input_text in inputs:
104
+ # Format the prompt according to LLaDA's expected format
105
+ formatted_prompt = self._format_prompt(input_text, system_prompt)
106
+
107
+ if image_data:
108
+ try:
109
+ # Process image if present
110
+ image = self._load_image(image_data)
111
+ inputs_processor = self.processor(
112
+ text=formatted_prompt, images=image, return_tensors="pt"
113
+ )
114
+
115
+ # Move inputs to the same device as the model
116
+ for k, v in inputs_processor.items():
117
+ if isinstance(v, torch.Tensor):
118
+ inputs_processor[k] = v.to(self.model.device)
119
+
120
+ # Generate text with image context
121
+ with torch.no_grad():
122
+ outputs = self.model.generate(
123
+ **inputs_processor,
124
+ max_new_tokens=max_new_tokens,
125
+ temperature=temperature,
126
+ top_p=top_p,
127
+ do_sample=do_sample,
128
+ pad_token_id=self.tokenizer.pad_token_id,
129
+ )
130
+
131
+ # Decode generated text
132
+ generated_text = self.tokenizer.decode(
133
+ outputs[0], skip_special_tokens=True
134
+ )
135
+ generated_texts.append(generated_text)
136
+
137
+ except Exception as e:
138
+ # If image processing fails, fall back to text-only
139
+ print(
140
+ f"Error processing image: {e}. Falling back to text-only processing."
141
+ )
142
+ image_data = None
143
+
144
+ if not image_data:
145
+ # Text-only processing
146
+ input_tokens = self.tokenizer(formatted_prompt, return_tensors="pt").to(
147
+ self.model.device
148
+ )
149
+
150
+ # Generate text
151
+ with torch.no_grad():
152
+ outputs = self.model.generate(
153
+ **input_tokens,
154
+ max_new_tokens=max_new_tokens,
155
+ temperature=temperature,
156
+ top_p=top_p,
157
+ do_sample=do_sample,
158
+ pad_token_id=self.tokenizer.pad_token_id,
159
+ )
160
 
161
+ # Decode generated text
162
+ generated_text = self.tokenizer.decode(
163
+ outputs[0], skip_special_tokens=True
164
+ )
165
+ generated_texts.append(generated_text)
166
 
167
  # Return results in expected format
168
  return {"generated_text": generated_texts}
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ torch>=2.0.0
2
+ transformers>=4.30.0
3
+ pillow>=9.0.0
4
+ requests>=2.25.0
5
+ accelerate>=0.20.0