Commit
·
5b6527d
1
Parent(s):
b55cbe6
initial commit
Browse files- .gitignore +1 -0
- README.md +50 -0
- handler.py +67 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- text-generation
|
6 |
+
- llama
|
7 |
+
- instruct
|
8 |
+
license: apache-2.0
|
9 |
+
pipeline_tag: text-generation
|
10 |
+
---
|
11 |
+
|
12 |
+
# LLaDA-8B-Instruct Model
|
13 |
+
|
14 |
+
This is the LLaDA-8B-Instruct model deployed as a Hugging Face inference endpoint.
|
15 |
+
|
16 |
+
## Model Details
|
17 |
+
|
18 |
+
LLaDA-8B-Instruct is a language model designed for instruction-following tasks.
|
19 |
+
|
20 |
+
## Usage
|
21 |
+
|
22 |
+
This model can be used for text generation tasks. Here's an example:
|
23 |
+
|
24 |
+
```python
|
25 |
+
import requests
|
26 |
+
|
27 |
+
API_URL = "https://YOUR-ENDPOINT-URL"
|
28 |
+
headers = {"Authorization": "Bearer YOUR_HF_TOKEN"}
|
29 |
+
|
30 |
+
def query(payload):
|
31 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
32 |
+
return response.json()
|
33 |
+
|
34 |
+
output = query({
|
35 |
+
"inputs": "Write a short story about a robot learning to paint:",
|
36 |
+
"parameters": {
|
37 |
+
"max_new_tokens": 250,
|
38 |
+
"temperature": 0.7,
|
39 |
+
"top_p": 0.95,
|
40 |
+
"do_sample": true
|
41 |
+
}
|
42 |
+
})
|
43 |
+
```
|
44 |
+
|
45 |
+
## API Inference Configuration
|
46 |
+
|
47 |
+
```yaml
|
48 |
+
api_inference:
|
49 |
+
handler_class: handler.EndpointHandler
|
50 |
+
```
|
handler.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
class EndpointHandler:
|
7 |
+
def __init__(self, path=""):
|
8 |
+
# Load model with half precision to save memory
|
9 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
path, torch_dtype=torch.float16, device_map="auto"
|
11 |
+
)
|
12 |
+
|
13 |
+
# Load tokenizer
|
14 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
15 |
+
|
16 |
+
# Ensure pad token is properly set
|
17 |
+
if self.tokenizer.pad_token_id is None:
|
18 |
+
if (
|
19 |
+
hasattr(self.tokenizer, "eos_token_id")
|
20 |
+
and self.tokenizer.eos_token_id is not None
|
21 |
+
):
|
22 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
23 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
24 |
+
else:
|
25 |
+
# Fallback to a common pad token
|
26 |
+
self.tokenizer.pad_token_id = 0
|
27 |
+
self.tokenizer.pad_token = self.tokenizer.convert_ids_to_tokens(0)
|
28 |
+
|
29 |
+
print(f"Model loaded successfully. Pad token ID: {self.tokenizer.pad_token_id}")
|
30 |
+
|
31 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]:
|
32 |
+
"""Handle inference requests"""
|
33 |
+
# Extract inputs and parameters from request data
|
34 |
+
inputs = data.pop("inputs", data)
|
35 |
+
parameters = data.pop("parameters", {})
|
36 |
+
|
37 |
+
# Convert single string input to list for consistent handling
|
38 |
+
if isinstance(inputs, str):
|
39 |
+
inputs = [inputs]
|
40 |
+
|
41 |
+
# Extract generation parameters with sensible defaults
|
42 |
+
max_new_tokens = parameters.get("max_new_tokens", 256)
|
43 |
+
temperature = parameters.get("temperature", 0.7)
|
44 |
+
top_p = parameters.get("top_p", 0.95)
|
45 |
+
do_sample = parameters.get("do_sample", True)
|
46 |
+
|
47 |
+
# Tokenize inputs
|
48 |
+
input_tokens = self.tokenizer(inputs, return_tensors="pt", padding=True).to(
|
49 |
+
self.model.device
|
50 |
+
)
|
51 |
+
|
52 |
+
# Generate text
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = self.model.generate(
|
55 |
+
**input_tokens,
|
56 |
+
max_new_tokens=max_new_tokens,
|
57 |
+
temperature=temperature,
|
58 |
+
top_p=top_p,
|
59 |
+
do_sample=do_sample,
|
60 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
61 |
+
)
|
62 |
+
|
63 |
+
# Decode generated text
|
64 |
+
generated_texts = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
65 |
+
|
66 |
+
# Return results in expected format
|
67 |
+
return {"generated_text": generated_texts}
|