scibert_prefix_cont_ll_SEP
This model is a fine-tuned version of allenai/scibert_scivocab_uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0769
- F1 Weighted: 0.9112
- F1 Samples: 0.9155
- F1 Macro: 0.8184
- F1 Micro: 0.9121
- Accuracy: 0.8863
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Weighted | F1 Samples | F1 Macro | F1 Micro | Accuracy |
---|---|---|---|---|---|---|---|---|
0.2213 | 0.3381 | 500 | 0.1392 | 0.8151 | 0.8223 | 0.6081 | 0.8355 | 0.8018 |
0.1377 | 0.6761 | 1000 | 0.1129 | 0.8523 | 0.8584 | 0.6889 | 0.8645 | 0.8342 |
0.1214 | 1.0142 | 1500 | 0.1103 | 0.8504 | 0.8552 | 0.6955 | 0.8613 | 0.8302 |
0.0921 | 1.3523 | 2000 | 0.0961 | 0.8656 | 0.8655 | 0.7111 | 0.8740 | 0.8390 |
0.0863 | 1.6903 | 2500 | 0.0900 | 0.8789 | 0.8810 | 0.7281 | 0.8847 | 0.8545 |
0.0825 | 2.0284 | 3000 | 0.0959 | 0.8764 | 0.8844 | 0.7323 | 0.8826 | 0.8532 |
0.0567 | 2.3665 | 3500 | 0.0856 | 0.8879 | 0.8951 | 0.7454 | 0.8922 | 0.8633 |
0.061 | 2.7045 | 4000 | 0.0952 | 0.8802 | 0.8827 | 0.7397 | 0.8856 | 0.8586 |
0.0532 | 3.0426 | 4500 | 0.0839 | 0.8979 | 0.9058 | 0.7639 | 0.9031 | 0.8775 |
0.0361 | 3.3807 | 5000 | 0.0831 | 0.9007 | 0.9113 | 0.7791 | 0.9045 | 0.8769 |
0.0369 | 3.7187 | 5500 | 0.0833 | 0.9018 | 0.9094 | 0.7880 | 0.9031 | 0.8775 |
0.0392 | 4.0568 | 6000 | 0.0826 | 0.9062 | 0.9108 | 0.8180 | 0.9081 | 0.8823 |
0.027 | 4.3949 | 6500 | 0.0769 | 0.9112 | 0.9155 | 0.8184 | 0.9121 | 0.8863 |
0.0251 | 4.7329 | 7000 | 0.0868 | 0.8996 | 0.9061 | 0.7693 | 0.9018 | 0.8714 |
0.0255 | 5.0710 | 7500 | 0.0867 | 0.9083 | 0.9147 | 0.8048 | 0.9115 | 0.8870 |
0.0212 | 5.4091 | 8000 | 0.0834 | 0.9100 | 0.9161 | 0.8209 | 0.9116 | 0.8850 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 179
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ClementineBleuze/scibert_prefix_cont_ll_SEP
Base model
allenai/scibert_scivocab_uncased