Finetuning - ChoudharyTAlhaArain/kadsinky-web-decoder-3.1

This pipeline was finetuned from kandinsky-community/kandinsky-2-2-decoder on the ChoudharyTAlhaArain/web-kadi-2.0 dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['update web ui/ux']:

val_imgs_grid

Pipeline usage

You can use the pipeline like so:

from diffusers import DiffusionPipeline
import torch

pipeline = AutoPipelineForText2Image.from_pretrained("ChoudharyTAlhaArain/kadsinky-web-decoder-3.1", torch_dtype=torch.float16)
prompt = "update web ui/ux"
image = pipeline(prompt).images[0]
image.save("my_image.png")

Training info

These are the key hyperparameters used during training:

  • Epochs: 116
  • Learning rate: 1e-05
  • Batch size: 1
  • Gradient accumulation steps: 4
  • Image resolution: 512
  • Mixed-precision: None

More information on all the CLI arguments and the environment are available on your wandb run page.

Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for ChoudharyTAlhaArain/kadsinky-web-decoder-3.1

Finetuned
(7)
this model

Dataset used to train ChoudharyTAlhaArain/kadsinky-web-decoder-3.1