File size: 9,309 Bytes
8d9d9da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import seaborn as sns
import pandas as pd
import numpy as np
import os
import matplotlib.colors as mcolors
from fuson_plm.utils.visualizing import set_font

fo_puncta_db_training_thresh31 = pd.DataFrame(data={
        'Model Type': ['fo_puncta_ml'],
        'Model Name': ['fo_puncta_ml_literature'],
        'Model Epoch': np.nan,
        'Accuracy': 0.81,
        'Precision': 0.78,
        'Recall': 0.98,
        'F1 Score': 0.87,
        'AUROC': 0.88,
        'AUPRC': 0.94  
})

fo_puncta_db_verification_thresh83 = pd.DataFrame(data={
        'Model Type': ['fo_puncta_ml'],
        'Model Name': ['fo_puncta_ml_literature'],
        'Model Epoch': np.nan,
        'Accuracy': 0.79,
        'Precision': 0.81,
        'Recall': 0.89,
        'F1 Score': 0.85,
        'AUROC': 0.73,
        'AUPRC': 0.82  
})

# Method for lengthening the model name
def lengthen_model_name(row):
    name = row['Model Name']
    epoch = row['Model Epoch']
    
    if 'esm' in name:
        return name
    if 'puncta' in name:
        return name
    
    return f'{name}_e{epoch}'

# Method for shortening the model name for display
def shorten_model_name(row):
    name = row['Model Name']
    epoch = row['Model Epoch']
    
    if 'esm' in name:
        return 'ESM-2-650M'
    if name=='fo_puncta_ml':
        return 'FO-Puncta-ML'
    if name=='fo_puncta_ml_literature':
        return 'FO-Puncta-ML Lit'
    if name=="prot_t5_xl_half_uniref50_enc":
        return 'ProtT5-XL-U50'  # this is waht they call it in the paper
    
    if 'snp_' in name:
        prob_type = 'snp'
    elif 'uniform_' in name:
        prob_type = 'uni'
    
    layers = name.split('layers')[0].split('_')[-1]
    dt = name.split('mask')[1].split('-', 1)[1]
    
    return f'{prob_type}_{layers}L_{dt}_e{epoch}'
    
def make_final_bar(dataframe, title, save_path):
    set_font()
    df = dataframe.copy(deep=True)

    # Pivot the DataFrame to have metrics as rows and names as columns, and reorder columns
    pivot_df = df.pivot(index='Metric', columns='Name', values='Value')
    ordered_columns = [x for x in ['FOdb','ProtT5-XL-U50', 'ESM-2-650M', 'FusOn-pLM'] if x in pivot_df.columns]
    pivot_df = pivot_df[ordered_columns]

    # Define the groups
    engineered_embeddings = ['FOdb']
    deep_learning_embeddings = ['ProtT5-XL-U50', 'ESM-2-650M', 'FusOn-pLM']

    # Reorder the metrics
    metric_order = ['Accuracy', 'Precision', 'Recall', 'F1', 'AUROC'][::-1]
    pivot_df = pivot_df.reindex(metric_order)

    # Plotting
    fig, ax = plt.subplots(figsize=(8, 6), dpi=300)  # Increased figure size for better legend placement

    # Define bar width and positions
    bar_width = 0.2
    indices = np.arange(len(pivot_df))

    # Use a colorblind-friendly color scheme from tableau
    color_map = {
        #'One-Hot': "#999999",
        'FOdb': "#E69F00",
        'ESM-2-650M': "#F0E442",
        'FusOn-pLM': "#FF69B4",
        'ProtT5-XL-U50': "#00ccff" # light blue
    }
    colors = [color_map[col] for col in ordered_columns]

    # Plot bars for each category and add them to appropriate legend groups
    engineered_handles = []
    deep_learning_handles = []
    for i, (name, color) in enumerate(zip(pivot_df.columns, colors)):
        bars = ax.barh(indices + i * bar_width, pivot_df[name], bar_width, label=name, color=color)
        if name in engineered_embeddings:
            engineered_handles.append(bars[0])
        else:
            deep_learning_handles.append(bars[0])

    # Add bold black asterisks next to the winning bars for each category (could be multiple)
    #for j, metric in enumerate(pivot_df.index):
    #    max_value = pivot_df.loc[metric].max()
    #    max_indices = pivot_df.loc[metric][pivot_df.loc[metric] == max_value].index
    #    for max_name in max_indices:
    #        max_index = list(pivot_df.columns).index(max_name)
    #        ax.text(max_value + 0.01, j + max_index * bar_width - bar_width / 4, '*',
    #                color='black', fontsize=12, fontweight='bold', ha='center', va='center')

    # Set labels, ticks, and title
    plt.xlabel('Value', fontsize=44)  # Adjusted font size
    ax.set_yticks(indices + bar_width * 1.5)
    ax.set_xlim([0, 1])
    ax.set_yticklabels(pivot_df.index)
    # make the xticklabels size 24
    ax.tick_params(axis='x')
    ax.set_title(title, fontsize=44)  # Adjusted font size

    # Setting font size for tick labels
    for label in plt.gca().get_xticklabels():
        label.set_fontsize(32)  # Adjusted font size
    for label in plt.gca().get_yticklabels():
        label.set_fontsize(32)  # Adjusted font size

    # Create two separate legends
    if engineered_handles:
        legend1 = fig.legend(
            engineered_handles[::-1],
            [emb for emb in engineered_embeddings if emb in ordered_columns][::-1],
            loc='center left',
            bbox_to_anchor=(1, 0.4),
            title="Engineered Embeddings",
            title_fontsize=24)  # Adjusted font size
    if deep_learning_handles:
        legend2 = fig.legend(
            deep_learning_handles[::-1],
            [emb for emb in deep_learning_embeddings if emb in ordered_columns][::-1],
            loc='center left',
            bbox_to_anchor=(1, 0.6),
            title="Learned Embeddings",
            title_fontsize=24)  # Adjusted font size

    # Adjust legend text size
    if engineered_handles:
        ax.add_artist(legend1)
        for text in legend1.get_texts():
            text.set_fontsize(22)  # Adjusted font size
        for handle in legend1.legendHandles:
            if isinstance(handle, mpatches.Patch):
                handle.set_height(15)  # Adjust height
                handle.set_width(20)   # Adjust width
            elif hasattr(handle, '_sizes'):
                handle._sizes = [200]  # Increase marker size in the legend

    if deep_learning_handles:
        ax.add_artist(legend2)
        for text in legend2.get_texts():
            text.set_fontsize(22)  # Adjusted font size
        for handle in legend2.legendHandles:
            if isinstance(handle, mpatches.Patch):
                handle.set_height(15)  # Adjust height
                handle.set_width(20)   # Adjust width
            elif hasattr(handle, '_sizes'):
                handle._sizes = [200]  # Increase marker size in the legend

    plt.tight_layout()  # Adjust layout to make room for the legends

    # Save the plot to a file
    plt.savefig(save_path, dpi=300, bbox_inches='tight')

    plt.show()

def prepare_data_for_bar(results_dir, task, split, thresh=None):
    fname = f"{task}_{split}FOs_results.csv"
    if thresh is not None: fname = f"{task}_{split}FOs_{thresh}thresh_results.csv"
    image_save_path = results_dir + '/figures/' + fname.split('_results.csv')[0]+'_barchart.png'
    
    data = pd.read_csv(f"{results_dir}/{fname}")
    data = data.loc[
        data['Model Name'].isin(['best',
                          'fo_puncta_ml',
                          'esm2_t33_650M_UR50D',
                          'prot_t5_xl_half_uniref50_enc'])
    ]
    data = pd.DataFrame(data = {
        'Name': data['Model Name'].tolist() * 5,
        'Metric': ['Accuracy', 'Accuracy', 'Accuracy','Accuracy',
               'Precision', 'Precision', 'Precision', 'Precision',
               'Recall', 'Recall', 'Recall', 'Recall',
               'F1', 'F1', 'F1','F1',
               'AUROC', 'AUROC', 'AUROC','AUROC'],
        'Value': data['Accuracy'].tolist() + data['Precision'].tolist() + data['Recall'].tolist() + data['F1 Score'].tolist() + data['AUROC'].tolist()
    }
    )
    rename_dict = {'fo_puncta_ml': 'FOdb',
                   'esm2_t33_650M_UR50D':'ESM-2-650M', 
                   'best':'FusOn-pLM',
                   'prot_t5_xl_half_uniref50_enc': 'ProtT5-XL-U50'}
    data['Name'] = data['Name'].map(rename_dict)
    return data, image_save_path
    
def make_all_final_bar_charts(results_dir):
    # Puncta verification
    data, image_save_path = prepare_data_for_bar(results_dir,"formation","verification",thresh=0.83)
    data_cp = data.copy(deep=True)
    data_cp["Value"] = data_cp["Value"].round(3)
    data_cp.to_csv(image_save_path.replace(".png","_source_data.csv"),index=False)
    make_final_bar(data, "Puncta Propensity", image_save_path)
    
    # Nucleus verification
    data, image_save_path = prepare_data_for_bar(results_dir,"nucleus","verification",thresh=None)
    data_cp = data.copy(deep=True)
    data_cp["Value"] = data_cp["Value"].round(3)
    data_cp.to_csv(image_save_path.replace(".png","_source_data.csv"),index=False)
    make_final_bar(data, "Nucleus Localization", image_save_path)
    
    # Cytoplasm verification
    data, image_save_path = prepare_data_for_bar(results_dir,"cytoplasm","verification",thresh=None)
    data_cp = data.copy(deep=True)
    data_cp["Value"] = data_cp["Value"].round(3)
    data_cp.to_csv(image_save_path.replace(".png","_source_data.csv"),index=False)
    make_final_bar(data, "Cytoplasm Localization", image_save_path)

def main(): 
    # Read in the input data
    results_dir="results/final"
    os.makedirs(f"{results_dir}/figures",exist_ok=True)
    make_all_final_bar_charts(results_dir)
    
if __name__ == '__main__':
    main()