File size: 8,237 Bytes
e048d40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
import os
from sklearn.metrics import r2_score
import matplotlib.colors as mcolors
from fuson_plm.utils.visualizing import set_font

global default_cmap_dict
default_cmap_dict = {
    'Asphericity': '#785EF0',
    'End-to-End Distance (Re)': '#DC267F',
    'Radius of Gyration (Rg)': '#FE6100',
    'Scaling Exponent': '#FFB000'
}

# Method for lengthening the model name
def lengthen_model_name(model_name, model_epoch):
    if 'esm' in model_name:
        return model_name
    
    return f'{model_name}_e{model_epoch}'

def plot_train_val_test_values_hist(train_values_list, val_values_list, test_values_list, dataset_name="Data", color="black", save_path=None, ax=None):
    """
    Plot Histogram to show the ranges of values
    """
    set_font()
    if ax is None:
        fig, ax = plt.subplots(1, 1, figsize=(6, 4), dpi=300)
        
    total_seqs = len(train_values_list)+len(val_values_list)+len(test_values_list)
    ax.hist(train_values_list, color=color, alpha=0.7,label=f"train (n={len(train_values_list)})")
    if not(test_values_list is None):
        ax.hist(test_values_list, color='black',alpha=0.7,label=f"test (n={len(test_values_list)})")
    if not(val_values_list is None): 
        ax.hist(val_values_list, color='grey',alpha=0.7,label=f"val (n={len(val_values_list)})")
    ax.grid(True)
    ax.set_axisbelow(True)
    ax.set_title(f'{dataset_name} Distribution (n={total_seqs})')
    ax.set_xlabel(dataset_name)
    ax.legend()
    plt.tight_layout()
    
    if save_path is not None:
        plt.savefig(save_path)

def plot_values_hist(values_list, dataset_name="Data", color="black", save_path=None, ax=None):
    """
    Plot Histogram to show the ranges of values
    """
    set_font()
    if ax is None:
        fig, ax = plt.subplots(1, 1, figsize=(6, 4), dpi=300)
        
    ax.hist(values_list, color=color)
    ax.grid(True)
    ax.set_axisbelow(True)
    ax.set_title(f'{dataset_name} Distribution')
    ax.set_xlabel(dataset_name)
    plt.tight_layout()
    
    if save_path is not None:
        plt.savefig(save_path)
        
def plot_all_values_hist_grid(values_dict, cmap_dict=default_cmap_dict, save_path="processed_data/value_histograms.png"):
    """
    Args:
        values_dict: dictionary where keys are dataset names and values are value lists
        cmap_dict: dictioanry where keys are dataset names (same as in values dict) and values are value lists
    """
    
    fig, axes = plt.subplots(2, 2, figsize=(12, 8), dpi=300)
    axes = axes.flatten()
    
    for i, (dataset_name, values_list) in enumerate(values_dict.items()):
        ax = axes[i]
        plot_values_hist(values_list, dataset_name=dataset_name, color=cmap_dict[dataset_name], ax=ax)
        
    fig.set_tight_layout(True)
    fig.savefig(save_path)


def plot_all_train_val_test_values_hist_grid(values_dict, cmap_dict=default_cmap_dict, save_path="processed_data/value_histograms.png"):
    """
    Args:
        values_dict: dictionary where keys are dataset names and values are another dict: {'train': train_values_list, 'test': test_values_list}
        cmap_dict: dictioanry where keys are dataset names (same as in values dict) and values are value lists
    """
    
    fig, axes = plt.subplots(2, 2, figsize=(12, 8), dpi=300)
    axes = axes.flatten()
    
    for i, (dataset_name, train_val_test_dict) in enumerate(values_dict.items()):
        ax = axes[i]
        train_values_list = train_val_test_dict['train']
        test_values_list, val_values_list = None, None
        if 'test' in train_val_test_dict:
            test_values_list = train_val_test_dict['test']
        if 'val' in train_val_test_dict:
            val_values_list = train_val_test_dict['val']
        plot_train_val_test_values_hist(train_values_list, val_values_list, test_values_list, dataset_name=dataset_name, color=cmap_dict[dataset_name], ax=ax)
        
    fig.set_tight_layout(True)
    fig.savefig(save_path)
    
#only need to change labels at bottom depending on what embeddings+dimension is being looked at
def plot_r2(model_type, idr_property, test_preds, save_path):
    set_font()
    
    # prepare ylabels from idr_property
    ylabel_dict = {'asph': 'Asphericity',
                    'scaled_re': 'End-to-End Radius, $R_e$',
                    'scaled_rg': 'Radius of Gyration, $R_g$',
                    'scaling_exp': 'Polymer Scaling Exponent'}
    y_unitlabel_dict = {'asph': 'Asphericity',
                    'scaled_re': '$R_e$ (Å)',
                    'scaled_rg': '$R_g$ (Å)',
                    'scaling_exp': 'Exponent'

    }
    y_label = ylabel_dict[idr_property]
    y_unitlabel = y_unitlabel_dict[idr_property]
    
    # get true values and predictions
    true_values = test_preds['true_values'].tolist()
    predictions = test_preds['predictions'].tolist()
    
    # save this source data, including the IDs of the sequences
    test_df = pd.read_csv(f"splits/{idr_property}/test_df.csv")
    processed_data = pd.read_csv("processed_data/all_albatross_seqs_and_properties.csv")
    seq_id_dict = dict(zip(processed_data['Sequence'],processed_data['IDs']))
    test_df['IDs'] = test_df['Sequence'].map(seq_id_dict)
    test_df_with_preds = test_preds[['true_values','predictions']]
    test_df_with_preds['IDs'] = test_df['IDs']
    print("number of sequences with no ID: ", len(test_df_with_preds.loc[test_df_with_preds['IDs'].isna()]))
    test_df_with_preds.to_csv(save_path.replace(".png","_source_data.csv"),index=False)
    
    r2 = r2_score(true_values, predictions)

    # Plotting
    plt.figure(figsize=(10, 8))
    plt.scatter(true_values, predictions, alpha=0.5, label='Predictions')
    plt.plot([min(true_values), max(true_values)], [min(true_values), max(true_values)], 'r--', label='Ideal Fit')
    plt.text(0.65, 0.35, f"$R^2$ = {r2:.2f}", transform=plt.gca().transAxes, fontsize=44)
    # Adjusting font sizes and setting font properties
    plt.xlabel(f'True {y_unitlabel}',size=44)
    plt.ylabel(f'Predicted {y_unitlabel}',size=44)
    plt.title(f"{y_label}",size=50) #: {model_type}\n($R^2$={r2:.2f})",size=44)

    # Create legend and set font properties
    legend = plt.legend(fontsize=32)
    for text in legend.get_texts():
        text.set_fontsize(32) 

    # Adjust marker size in the legend
    for handle in legend.legendHandles:
        handle._sizes = [100]

    # Enable grid
    plt.grid(True)

    # Adjusting tick labels font size
    plt.xticks(fontsize=36)
    plt.yticks(fontsize=36)

    # Setting font properties for tick labels (another way to adjust them individually)
    for label in plt.gca().get_xticklabels():
        label.set_fontsize(32)

    for label in plt.gca().get_yticklabels():
        label.set_fontsize(32)
      
    plt.tight_layout()
    plt.savefig(save_path, dpi=300, bbox_inches='tight')
    plt.show()

def plot_all_r2(output_dir, idr_properties):
    for idr_property in idr_properties:
        # make the R^2 Plots for the BEST one
        best_results = pd.read_csv(f"{output_dir}/{idr_property}_best_test_r2.csv")
        model_type_to_path_dict = dict(zip(best_results['model_type'],best_results['path_to_model']))
        for model_type, path_to_model in model_type_to_path_dict.items():
            model_preds_folder = path_to_model.split('/best-checkpoint.ckpt')[0]
            test_preds = pd.read_csv(f"{model_preds_folder}/{idr_property}_test_predictions.csv")
        
            # make paths for R^2 plots
            if not os.path.exists(f"{output_dir}/r2_plots"):
                    os.makedirs(f"{output_dir}/r2_plots")
            os.makedirs(f"{output_dir}/r2_plots/{idr_property}", exist_ok=True)
            
            model_type_dict = {
                    'fuson_plm': 'FusOn-pLM',
                    'esm2_t33_650M_UR50D': 'ESM-2'
            }
            r2_save_path = f"{output_dir}/r2_plots/{idr_property}/{model_type}_{idr_property}_R2.png"
            plot_r2(model_type_dict[model_type], idr_property, test_preds, r2_save_path) 

def main():
    plot_all_r2("results/final", ["asph","scaled_re","scaled_rg","scaling_exp"])
    
if __name__ == '__main__':
    main()