File size: 5,893 Bytes
e048d40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import pytorch_lightning as pl
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pandas as pd
from tqdm import tqdm
import pickle
import torch
import esm
import numpy as np
import matplotlib.pyplot as plt
import random
import io
from transformers import EsmModel, EsmTokenizer, EsmConfig, AutoTokenizer
from sklearn.metrics import roc_auc_score
#one-hot MLP model (input 1280 (esm-2))
class ProteinMLPOneHot(pl.LightningModule):
def __init__(self):
super().__init__()
self.network = nn.Sequential(
nn.Linear(20, 8),
nn.ReLU(),
nn.LayerNorm(8),
nn.Dropout(0.2),
nn.Linear(8, 4),
nn.ReLU(),
nn.LayerNorm(4),
nn.Dropout(0.2),
nn.Linear(4, 1)
)
def forward(self, x):
x = self.network(x)
return x #pass x through linear layers with activation functions, dropout, and layernorm
def training_step(self, batch, batch_idx):
x, y = batch['Protein Input'], batch['Dimension'].float() #get batch
y_hat = self(x).squeeze(-1) #get prediction from batch
loss = F.mse_loss(y_hat, y) #calc loss from prediction and dimension of each
self.log('train_loss', loss, on_epoch=True, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch['Protein Input'], batch['Dimension'].float()
y_hat = self(x).squeeze(-1)
val_loss = F.mse_loss(y_hat, y)
self.log('val_loss', val_loss, on_epoch=True, prog_bar=True, logger=True)
return val_loss
def test_step(self, batch, batch_idx):
x, y = batch['Protein Input'], batch['Dimension'].float()
y_hat = self(x).squeeze(-1)
test_loss = F.mse_loss(y_hat, y)
self.log('test_loss', test_loss, on_epoch=True, prog_bar=True, logger=True)
return test_loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.0003)
return optimizer
# def on_train_epoch_end(self):
# train_loss = self.trainer.callback_metrics['train_loss']
# print(f"Epoch {self.current_epoch + 1} - Training Loss: {train_loss:.4f}")
# wandb.log({'train_loss': train_loss, 'epoch': self.current_epoch + 1})
# def on_validation_epoch_end(self):
# val_loss = self.trainer.callback_metrics['val_loss']
# print(f"Epoch {self.current_epoch + 1} - Validation Loss: {val_loss:.4f}")
# wandb.log({'val_loss': val_loss, 'epoch': self.current_epoch + 1})
# def on_test_epoch_end(self):
# test_loss = self.trainer.callback_metrics['test_loss']
# print(f"Test Loss: {test_loss:.4f}")
# wandb.log({'test_loss': test_loss})
#regular MLP model (input 1280 (esm-2))
class ProteinMLPESM(pl.LightningModule):
def __init__(self):
super().__init__()
self.network = nn.Sequential(
nn.Linear(1280, 640),
nn.ReLU(),
nn.LayerNorm(640),
nn.Dropout(0.2),
nn.Linear(640, 320),
nn.ReLU(),
nn.LayerNorm(320),
nn.Dropout(0.2),
nn.Linear(320, 1)
)
def forward(self, x):
x = self.network(x)
return x #pass x through linear layers with activation functions, dropout, and layernorm
def training_step(self, batch, batch_idx):
x, y = batch['Protein Input'], batch['Dimension'].float() #get batch
y_hat = self(x).squeeze(-1) #get prediction from batch
loss = F.mse_loss(y_hat, y) #calc loss from prediction and dimension of each
self.log('train_loss', loss, on_epoch=True, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_idx):
x, y = batch['Protein Input'], batch['Dimension'].float()
y_hat = self(x).squeeze(-1)
val_loss = F.mse_loss(y_hat, y)
self.log('val_loss', val_loss, on_epoch=True, prog_bar=True, logger=True)
return val_loss
def test_step(self, batch, batch_idx):
x, y = batch['Protein Input'], batch['Dimension'].float()
y_hat = self(x).squeeze(-1)
test_loss = F.mse_loss(y_hat, y)
self.log('test_loss', test_loss, on_epoch=True, prog_bar=True, logger=True)
return test_loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.0003)
return optimizer
# def on_train_epoch_end(self):
# train_loss = self.trainer.callback_metrics['train_loss']
# print(f"Epoch {self.current_epoch + 1} - Training Loss: {train_loss:.4f}")
# wandb.log({'train_loss': train_loss, 'epoch': self.current_epoch + 1})
# def on_validation_epoch_end(self):
# val_loss = self.trainer.callback_metrics['val_loss']
# print(f"Epoch {self.current_epoch + 1} - Validation Loss: {val_loss:.4f}")
# wandb.log({'val_loss': val_loss, 'epoch': self.current_epoch + 1})
# def on_test_epoch_end(self):
# test_loss = self.trainer.callback_metrics['test_loss']
# print(f"Test Loss: {test_loss:.4f}")
# wandb.log({'test_loss': test_loss})
class LossTrackerCallback(pl.Callback):
def __init__(self):
self.train_losses = []
self.val_losses = []
def on_train_epoch_end(self, trainer, pl_module):
# Access the most recent training loss from the logger
train_loss = trainer.callback_metrics.get('train_loss')
if train_loss:
self.train_losses.append(train_loss.item())
def on_validation_epoch_end(self, trainer, pl_module):
# Access the most recent validation loss from the logger
val_loss = trainer.callback_metrics.get('val_loss')
if val_loss:
self.val_losses.append(val_loss.item())
|