File size: 31,749 Bytes
bae913a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
# first few imports, just to set CUDA_VISIBLE_DEVICES before importing any torch libraries
import fuson_plm.benchmarking.caid.config as config
import os
os.environ['CUDA_VISIBLE_DEVICES'] = config.CUDA_VISIBLE_DEVICES
# remaining imports
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, precision_recall_curve, average_precision_score
from sklearn.model_selection import ParameterGrid
from tqdm import tqdm
import pandas as pd
import numpy as np
import sys
from datetime import datetime
import logging
from fuson_plm.benchmarking.embed import embed_dataset_for_benchmark
from fuson_plm.benchmarking.caid.model import DisorderPredictor
from fuson_plm.benchmarking.caid.utils import DisorderDataset, get_dataloader, check_dataloaders
from fuson_plm.benchmarking.caid.plot import make_auroc_curve, make_benchmark_auroc_curve
from fuson_plm.utils.logging import get_local_time, open_logfile, log_update, print_configpy
# configure Transformers logger to only show messages that are ERROR or more severe
logging.getLogger("transformers").setLevel(logging.ERROR)
def check_env_variables():
log_update("\nChecking on environment variables...")
log_update(f"\tCUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES')}")
log_update(f"\ttorch.cuda.device_count(): {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
log_update(f"\t\tDevice {i}: {torch.cuda.get_device_name(i)}")
def check_splits(df):
# make sure everything has a split
if len(df.loc[df['split'].isna()])>0:
raise Exception("Error: not every benchmarking sequence has been allocated to a split (train or test)")
# make sure the only things are train and test
if len({'train','test'} - set(df['split'].unique()))!=0:
raise Exception("Error: splits column should only have \'train\' and \'test\'.")
# make sure there are no duplicate sequences
if len(df.loc[df['Sequence'].duplicated()])>0:
raise Exception("Error: duplicate sequences provided")
# Training function
def train(model, train_loader, optimizer, n_epochs, criterion, device):
"""
Trains the model for a single epoch.
Args:
model (nn.Module): model that will be trained
dataloader (DataLoader): PyTorch DataLoader with training data
optimizer (torch.optim): optimizer
criterion (nn.Module): loss function
device (torch.device): device (GPU or CPU to train the model
Returns:
total_loss (float): model loss
"""
# Training loop
model.train()
# Avg loss across epochs
avg_train_losses = []
# Loop through epochs
for epoch in range(1, 1+n_epochs):
log_update(f"EPOCH {epoch}/{n_epochs}")
# Initialize loss for the epoch to 0
total_train_loss = 0
# Make update settings
total_steps = len(train_loader)
update_interval = total_steps // min(20,total_steps) # update semi-frequently
prog_bar = tqdm(total=total_steps, leave=True, file=sys.stdout)
# Iterate through batches
#with tqdm(enumerate(train_loader,start=1), total=len(train_loader), desc='Training Batch', leave=True, position=0) as pbar:
#for batch_idx, (embeddings, labels) in pbar:
for batch_idx, (_, embeddings, labels) in enumerate(train_loader, start=1):
# Move tensors to device
embeddings, labels = embeddings.to(device), labels.to(device)
# Forward pass
optimizer.zero_grad()
outputs = model(embeddings)
loss = criterion(outputs, labels)
loss.backward()
# Parameter updates
optimizer.step()
# Update loss
total_train_loss += loss.item()
if batch_idx % update_interval == 0 or batch_idx == total_steps:
prog_bar.update(update_interval)
sys.stdout.flush()
prog_bar.close()
# Calculate avg loss for the epoch
avg_train_loss = total_train_loss / total_steps
avg_train_losses.append(avg_train_loss)
return avg_train_losses
# Evaluation function
def evaluate(model, test_loader, device):
"""
Performs inference on a trained model
Args:
model (nn.Module): the trained model
test_loader (DataLoader): PyTorch DataLoader with testing data
device (torch.device): device (GPU or CPU) to be used for inference
Returns:
preds (list): predicted per-residue disorder labels
true_labels (list): ground truth per-residue disorder labels
"""
model.eval()
test_sequences, test_preds, true_labels = [], [], []
# Make update settings
total_steps = len(test_loader)
update_interval = total_steps // min(20,total_steps) # update semi-frequently
prog_bar = tqdm(total=total_steps, leave=True, file=sys.stdout)
with torch.no_grad():
for batch_idx, (sequences, embeddings, labels) in enumerate(test_loader,start=1):
embeddings, labels = embeddings.to(device), labels.to(device)
# forward pass
outputs = model(embeddings)
assert len(sequences)==1 # the batch size should be 1; make sure
test_sequences.append(sequences[0])
test_preds.append(outputs.cpu().numpy())
true_labels.append(labels.cpu().numpy())
if batch_idx % update_interval == 0 or batch_idx == total_steps:
prog_bar.update(update_interval)
sys.stdout.flush()
prog_bar.close()
return test_sequences, test_preds, true_labels
# Evaluation function
def benchmark(model, bench_loader, device):
"""
Performs inference on a trained model
Args:
model (nn.Module): the trained model
bench_loader (DataLoader): PyTorch DataLoader with benchmarking data
device (torch.device): device (GPU or CPU) to be used for inference
Returns:
preds (list): predicted per-residue disorder labels
true_labels (list): ground truth per-residue disorder labels
"""
model.eval()
bench_sequences, bench_preds, true_labels = [], [], []
# Make update settings
total_steps = len(bench_loader)
update_interval = total_steps // min(20,total_steps) # update semi-frequently
prog_bar = tqdm(total=total_steps, leave=True, file=sys.stdout)
with torch.no_grad():
for batch_idx, (sequences, embeddings, labels) in enumerate(bench_loader,start=1):
embeddings, labels = embeddings.to(device), labels.to(device)
# forward pass
outputs = model(embeddings)
assert len(sequences)==1 # the batch size should be 1; make sure
bench_sequences.append(sequences[0])
bench_preds.append(outputs.cpu().numpy())
true_labels.append(labels.cpu().numpy())
if batch_idx % update_interval == 0 or batch_idx == total_steps:
prog_bar.update(update_interval)
sys.stdout.flush()
prog_bar.close()
return bench_sequences, bench_preds, true_labels
def grid_search_caid_predictor(embedding_path, details, output_dir, param_grid, overwrite_saved_model=True):
# prepare the grid search
grid = ParameterGrid(param_grid)
# initialize dict
training_hyperparams = {
"learning_rate": None,
"num_epochs": None,
"num_layers": None,
"num_heads": None,
"dropout": None
}
for params in grid:
# Update hyperparameters
training_hyperparams.update(params)
log_update(f"\nHyperparams:{training_hyperparams}")
train_and_evaluate_caid_predictor(embedding_path, details, output_dir, training_hyperparams, overwrite_saved_model=overwrite_saved_model)
def find_best_hyperparams(output_dir, param_grid):
# Isolate the columns that define the hyperparameters
param_cols = [f"caid_model_{k}" for k in param_grid.keys()]
# Read in the files with all the stats
test_metrics = pd.read_csv(f'{output_dir}/caid_hyperparam_screen_test_metrics.csv')
train_losses = pd.read_csv(f'{output_dir}/caid_hyperparam_screen_train_losses.csv')
bench_metrics = pd.read_csv(f'{output_dir}/caid_hyperparam_screen_fusion_benchmark_metrics.csv')
# Replace nan with empty string for epoch
test_metrics['Model Epoch'] = test_metrics['Model Epoch'].fillna('')
train_losses['Model Epoch'] = train_losses['Model Epoch'].fillna('')
bench_metrics['Model Epoch'] = bench_metrics['Model Epoch'].fillna('')
# Find the hyperparams that produced the best test metrics for each model; then save all relevant numbers in one file
benchmarked_model_key = ['Model Type','Model Name','Model Epoch'] # uniquely defines the model being benchmarked
ordered_priority_stats = ['AUROC','F1 Score','Accuracy','Precision','Recall']
sort_order = benchmarked_model_key + ordered_priority_stats
sort_bools = [True]*len(benchmarked_model_key) + [False]*len(ordered_priority_stats)
test_metrics = test_metrics.sort_values(
sort_order,
ascending=sort_bools
).groupby(benchmarked_model_key).head(1).reset_index(drop=True)
# Find the last-epoch losses for each model and hyperparameters
group_order = benchmarked_model_key+param_cols
sort_order = group_order+["caid_model_epoch"]
sort_bools = [True]*(len(group_order))+[False]*1
train_losses = train_losses.sort_values(
by=sort_order,
ascending=sort_bools,
).groupby(group_order).head(1).reset_index(drop=True)
# Combine test and train results
merge_cols = benchmarked_model_key+param_cols+['path_to_model']
combined_results = pd.merge(
test_metrics,train_losses,
on=merge_cols,
how='left'
)
# Combine with benchmark results
bench_metrics = bench_metrics.rename(columns = {'AUROC': 'Fusion AUROC',
'F1 Score': 'Fusion F1 Score',
'Accuracy': 'Fusion Accuracy',
'Precision': 'Fusion Precision',
'Recall': 'Fusion Recall'})
combined_results = pd.merge(
combined_results,bench_metrics,
on=merge_cols,
how='left'
)
# reorder columns
combined_results = combined_results[[
'Model Type','Model Name','Model Epoch',
'Accuracy','Precision','Recall','F1 Score','AUROC',
'Fusion Accuracy','Fusion Precision','Fusion Recall','Fusion F1 Score','Fusion AUROC',
'caid_model_learning_rate','caid_model_num_epochs','caid_model_num_layers','caid_model_num_heads','caid_model_dropout','caid_model_epoch','caid_model_loss','path_to_model'
]]
combined_results.to_csv(f"{output_dir}/best_caid_model_results.csv",index=False)
def get_fresh_model(training_hyperparams, device):
input_dim, hidden_dim = 1280, 1280
model = DisorderPredictor(
input_dim=input_dim,
hidden_dim=hidden_dim,
num_layers=training_hyperparams["num_layers"],
num_heads=training_hyperparams["num_heads"],
dropout=training_hyperparams['dropout']
)
model.to(device) # Push model to device (should be GPU)
return model
def predict_from_best_thresh(prob_and_label_df, seq_label_dict=None):
"""
Finds the best prediction threshold for disorder by maximizing F1 Score. Makes predictions
Args:
prob_and_label_df: DataFrame with columns: sequence,prob_1
seq_label_dict: dictionary of sequences to true labels. e.g. 'MKLP': '1100'
Returns:
prob_and_label_df: new version of original dataframe with added columns: threshold,pred_labels
"""
# Use seq_label_dict to insert labels
prob_and_label_df['labels'] = prob_and_label_df['sequence'].map(seq_label_dict)
# EVERYTHING should have a label!!
assert prob_and_label_df['labels'].notna().all()
probs = ','.join(prob_and_label_df['prob_1'].tolist())
probs = [float(x) for x in probs.split(",")]
true_labels = ''.join(prob_and_label_df['labels'].tolist())
true_labels = [int(x) for x in list(true_labels)]
total_aas = sum(prob_and_label_df['sequence'].str.len())
log_update(f"\tLength of dataframe (number of seqs in dataset): {len(prob_and_label_df)}")
log_update(f"\tTotal AAs in dataset: {total_aas}\ttotal probabilities: {len(probs)}\ttotal labels: {len(true_labels)}")
y_true = np.array(true_labels) # True labels
y_probs = np.array(probs) # Predicted probabilities
# Compute precision, recall, and thresholds
precision, recall, thresholds = precision_recall_curve(y_true, y_probs)
precision = precision[:-1]
recall = recall[:-1]
# Calculate F1 scores for each threshold
f1_scores = 2 * (precision * recall) / (precision + recall)
# Find the threshold that maximizes the F1 score
best_threshold_index = np.argmax(f1_scores)
best_threshold = thresholds[best_threshold_index]
# Compute AUPRC
auprc = average_precision_score(y_true, y_probs)
log_update(f"\tBest Threshold: {best_threshold}")
log_update(f"\tBest F1 Score: {f1_scores[best_threshold_index]:.2f}")
log_update(f"\tAUPRC: {auprc:.2f}")
# Edit the original DataFrame
# Add threshold
prob_and_label_df['threshold'] = [best_threshold]*len(prob_and_label_df)
# Make predictions using this new threshold
prob_and_label_df['pred_labels'] = prob_and_label_df['prob_1'].apply(lambda x: ['1' if float(y)>best_threshold else '0' for y in x.split(",")])
prob_and_label_df['pred_labels'] = prob_and_label_df['pred_labels'].apply(lambda x: ''.join(x))
log_update("\tUsed calculated threshold to construct predicted labels for dataset")
return prob_and_label_df
def train_and_evaluate_caid_predictor(embedding_path, details, output_dir, training_hyperparams, overwrite_saved_model=True):
# unpack the details dictioanry
benchmark_model_type = details['model_type']
benchmark_model_name = details['model']
benchmark_model_epoch = details['epoch']
# define model save directories and make if they don't exist
model_outer_folder = f"trained_models/{benchmark_model_type}"
if not(np.isnan(benchmark_model_epoch)): model_outer_folder+=f"/{benchmark_model_name}/epoch{benchmark_model_epoch}"
model_full_folder=f"{model_outer_folder}/lr{training_hyperparams['learning_rate']}_bs{1}_hd{1280}_epochs{training_hyperparams['num_epochs']}_layers{training_hyperparams['num_layers']}_heads{training_hyperparams['num_heads']}_drpt{training_hyperparams['dropout']}"
l_model_full_folder = model_full_folder.split("/")
for i in range(0,len(l_model_full_folder)):
newdir="/".join(l_model_full_folder[:i+1])
os.makedirs(newdir, exist_ok=True)
# see if we've trained the model before
model_full_path = f"{model_full_folder}/model.pth"
train_new_model=True #initially, we believe we're training a new model. Let's make sure we want to.
if os.path.exists(model_full_path):
# If the model exists and we ARE allowed to overwrite, still train
if overwrite_saved_model:
log_update(f"\nOverwriting previously trained model with same hyperparams at {model_full_path}")
# If the model exists and we are NOT allowed to overwrite, don't train
else:
log_update(f"\nWARNING: this model may already be trained at {model_full_path}. Skipping")
train_new_model=False
# If training new model, get new model stats.
if train_new_model:
max_length=4500+2
# make Dataloaders
train_dataloader = get_dataloader('splits/train_df.csv', embedding_path, max_length=max_length, batch_size=1, shuffle=True)
test_dataloader = get_dataloader('splits/test_df.csv', embedding_path, max_length=max_length, batch_size=1, shuffle=False)
benchmark_dataloader = get_dataloader('splits/fusion_bench_df.csv', embedding_path, max_length=max_length, batch_size=1, shuffle=False)
# Set device to GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize the model and set it to deice
model = get_fresh_model(training_hyperparams, device)
# Initialize optimizer
optimizer = optim.Adam(model.parameters(), lr=training_hyperparams["learning_rate"])
criterion = nn.BCELoss()
num_epochs = training_hyperparams['num_epochs']
################# Train
# Train loop
avg_train_losses = train(model, train_dataloader, optimizer, num_epochs, criterion, device)
# Save teh train curve results
formatted_hyperparams = {f"caid_model_{k}":v for k, v in training_hyperparams.items()}
train_loss_df = pd.DataFrame.from_dict(formatted_hyperparams,orient='index').T
train_loss_df['caid_model_epoch'] = [list(range(1,1+num_epochs))]
train_loss_df['caid_model_loss'] = [avg_train_losses]
train_loss_df[['Model Type','Model Name','Model Epoch']] = [[benchmark_model_type,benchmark_model_name,benchmark_model_epoch]]
train_loss_df = train_loss_df.explode(['caid_model_epoch', 'caid_model_loss'])
# Save loss results - both to the model folder (including hyperparams), AND to the current results folder
train_loss_combined_results_csv_path = f'{output_dir}/caid_hyperparam_screen_train_losses.csv'
train_loss_individual_results_csv_path = f'{model_full_folder}/caid_train_losses.csv'
train_loss_df.to_csv(train_loss_individual_results_csv_path,mode='w',index=False)
train_loss_df['path_to_model'] = model_full_path
if not(os.path.exists(train_loss_combined_results_csv_path)):
train_loss_df.to_csv(train_loss_combined_results_csv_path,index=False)
else:
train_loss_df.to_csv(train_loss_combined_results_csv_path,mode='a',index=False,header=False)
log_update(f"Final train loss: {avg_train_losses[-1]:.4f}")
################# Test
# Evaluate model on test sequences
test_sequences, test_preds, test_labels = evaluate(model, test_dataloader, device)
test_metrics = calculate_metrics(test_preds, test_labels)
# Make dataframe of test metric results
test_results_df = pd.DataFrame.from_dict(test_metrics,orient='index').T
test_results_df[['Model Type','Model Name','Model Epoch']] = [[benchmark_model_type,benchmark_model_name,benchmark_model_epoch]]
# add the hyperparameters to this
hyperparams_df = pd.DataFrame.from_dict(formatted_hyperparams,orient='index').T
test_results_df = pd.concat([test_results_df,hyperparams_df],axis=1)
# Make dataframe of test probabilities (for AUROC curve)
# Create a pandas DataFrame
prob_and_label_df = pd.DataFrame(data = {
'sequence': test_sequences,
'prob_1': [arr.flatten() for arr in test_preds]
})
prob_and_label_df['prob_1'] = prob_and_label_df['prob_1'].apply(
lambda prob_list: ",".join([f"{round(x, 3):.3f}" for x in prob_list])
)
prob_and_label_df['Model Type'] = [benchmark_model_type]*len(prob_and_label_df)
prob_and_label_df['Model Name'] = [benchmark_model_name]*len(prob_and_label_df)
prob_and_label_df['Model Epoch'] = [benchmark_model_epoch]*len(prob_and_label_df)
# Save test results - both to the model folder (including hyperparams), AND to the current results folder
test_combined_results_csv_path = f'{output_dir}/caid_hyperparam_screen_test_metrics.csv'
test_results_csv_path = f'{model_full_folder}/caid_hyperparam_screen_test_metrics.csv'
test_results_df.to_csv(test_results_csv_path,mode='w',index=False)
test_results_df['path_to_model'] = model_full_path
if not(os.path.exists(test_combined_results_csv_path)):
test_results_df.to_csv(test_combined_results_csv_path,index=False)
else:
test_results_df.to_csv(test_combined_results_csv_path,mode='a',index=False,header=False)
# Save test probs - only to model folder
test_probs_csv_path = f'{model_full_folder}/caid_hyperparam_screen_test_probs.csv'
seq_label_dict = pd.read_csv('splits/test_df.csv')
seq_label_dict = dict(zip(seq_label_dict['Sequence'],seq_label_dict['Label']))
log_update("Finding best threshold for CAID test set predictions based on maximizing F1 Score...")
prob_and_label_df = predict_from_best_thresh(prob_and_label_df, seq_label_dict=seq_label_dict)
prob_and_label_df[['sequence','prob_1','threshold','pred_labels']].to_csv(test_probs_csv_path,mode='w',index=False)
log_update(f"Test performance: {test_metrics}")
################# Benchmark
# Evaluate model on benchmark sequences
benchmark_sequences, benchmark_preds, benchmark_labels = evaluate(model, benchmark_dataloader, device)
benchmark_metrics = calculate_metrics(benchmark_preds, benchmark_labels)
# Make dataframe of benchmark metric results
benchmark_results_df = pd.DataFrame.from_dict(benchmark_metrics,orient='index').T
benchmark_results_df[['Model Type','Model Name','Model Epoch']] = [[benchmark_model_type,benchmark_model_name,benchmark_model_epoch]]
# add the hyperparameters to this
hyperparams_df = pd.DataFrame.from_dict(formatted_hyperparams,orient='index').T
benchmark_results_df = pd.concat([benchmark_results_df,hyperparams_df],axis=1)
# Make dataframe of benchmark probabilities (for AUROC curve)
# Create a pandas DataFrame
prob_and_label_df = pd.DataFrame(data = {
'sequence': benchmark_sequences,
'prob_1': [arr.flatten() for arr in benchmark_preds]
})
prob_and_label_df['prob_1'] = prob_and_label_df['prob_1'].apply(
lambda prob_list: ",".join([f"{round(x, 3):.3f}" for x in prob_list])
)
prob_and_label_df['Model Type'] = [benchmark_model_type]*len(prob_and_label_df)
prob_and_label_df['Model Name'] = [benchmark_model_name]*len(prob_and_label_df)
prob_and_label_df['Model Epoch'] = [benchmark_model_epoch]*len(prob_and_label_df)
# Save benchmark results - both to the model folder (including hyperparams), AND to the current results folder
benchmark_combined_results_csv_path = f'{output_dir}/caid_hyperparam_screen_fusion_benchmark_metrics.csv'
benchmark_results_csv_path = f'{model_full_folder}/caid_hyperparam_screen_fusion_benchmark_metrics.csv'
benchmark_results_df.to_csv(benchmark_results_csv_path,mode='w',index=False)
benchmark_results_df['path_to_model'] = model_full_path
if not(os.path.exists(benchmark_combined_results_csv_path)):
benchmark_results_df.to_csv(benchmark_combined_results_csv_path,index=False)
else:
benchmark_results_df.to_csv(benchmark_combined_results_csv_path,mode='a',index=False,header=False)
# Save benchmark probs - only to model folder
benchmark_probs_csv_path = f'{model_full_folder}/caid_hyperparam_screen_fusion_benchmark_probs.csv'
seq_label_dict = pd.read_csv('splits/fusion_bench_df.csv')
seq_label_dict = dict(zip(seq_label_dict['Sequence'],seq_label_dict['Label']))
log_update("Finding best threshold for fusion benchmark set predictions based on maximizing F1 Score...")
prob_and_label_df = predict_from_best_thresh(prob_and_label_df, seq_label_dict=seq_label_dict)
prob_and_label_df[['sequence','prob_1','threshold','pred_labels']].to_csv(benchmark_probs_csv_path,mode='w',index=False)
log_update(f"benchmark performance: {benchmark_metrics}")
################# Save model
# Save model and metrics for this hyperparameter combination in the trained models folder
torch.save(model.state_dict(), model_full_path)
# if we didn't train again, still add those results to this benchmarking run so that they all get compared together
else:
# Load the appropriate train loses
train_loss_combined_results_csv_path = f'{output_dir}/caid_hyperparam_screen_train_losses.csv'
train_loss_individual_results_csv_path = f'{model_full_folder}/caid_train_losses.csv'
train_loss_individual_results = pd.read_csv(train_loss_individual_results_csv_path)
train_loss_individual_results['path_to_model'] = [model_full_path]*len(train_loss_individual_results)
# Add these results to the combined results file for this run if it exists; otherwise create new combined results file
if not(os.path.exists(train_loss_combined_results_csv_path)):
train_loss_individual_results.to_csv(train_loss_combined_results_csv_path,index=False)
else:
train_loss_individual_results.to_csv(train_loss_combined_results_csv_path,mode='a',index=False,header=False)
# Load the appropriate test stats
test_combined_results_csv_path = f'{output_dir}/caid_hyperparam_screen_test_metrics.csv'
test_results_csv_path = f'{model_full_folder}/caid_hyperparam_screen_test_metrics.csv'
test_individual_results = pd.read_csv(test_results_csv_path)
test_individual_results['path_to_model'] = [model_full_path]*len(test_individual_results)
# Add these results to the combined results file for this run if it exists; otherwise create new combined results file
if not(os.path.exists(test_combined_results_csv_path)):
test_individual_results.to_csv(test_combined_results_csv_path,index=False)
else:
test_individual_results.to_csv(test_combined_results_csv_path,mode='a',index=False,header=False)
# Load the appropriate benchmark stats
benchmark_combined_results_csv_path = f'{output_dir}/caid_hyperparam_screen_fusion_benchmark_metrics.csv'
benchmark_results_csv_path = f'{model_full_folder}/caid_hyperparam_screen_fusion_benchmark_metrics.csv'
benchmark_individual_results = pd.read_csv(benchmark_results_csv_path)
benchmark_individual_results['path_to_model'] = [model_full_path]*len(benchmark_individual_results)
# Add these results to the combined results file for this run if it exists; otherwise create new combined results file
if not(os.path.exists(benchmark_combined_results_csv_path)):
benchmark_individual_results.to_csv(benchmark_combined_results_csv_path,index=False)
else:
benchmark_individual_results.to_csv(benchmark_combined_results_csv_path,mode='a',index=False,header=False)
# Metrics calculation
def calculate_metrics(preds, labels, threshold=0.5):
"""
Calculates metrics to assess model performance
Args:
preds (list): model's predictions (probabilities)
labels (list): ground truth labels
threshold (float): minimum threshold a prediction must be met to be considered disordered
Returns:
accuracy (float): accuracy
precision (float): precision
recall (float): recall
f1 (float): F1 score
roc_auc (float): AUROC score
"""
flat_binary_preds, flat_prob_preds, flat_labels = [], [], []
for pred, label in zip(preds, labels):
flat_binary_preds.extend((pred > threshold).astype(int).flatten()) # binary preds are 1 or 0; 1 if the prob > threshold
flat_prob_preds.extend(pred.flatten())
flat_labels.extend(label.flatten())
flat_binary_preds = np.array(flat_binary_preds)
flat_prob_preds = np.array(flat_prob_preds)
flat_labels = np.array(flat_labels)
accuracy = accuracy_score(flat_labels, flat_binary_preds)
precision = precision_score(flat_labels, flat_binary_preds)
recall = recall_score(flat_labels, flat_binary_preds)
f1 = f1_score(flat_labels, flat_binary_preds)
roc_auc = roc_auc_score(flat_labels, flat_prob_preds)
# make dictionary of the results and return it
metrics_dict = {
'Accuracy': accuracy,
'Precision': precision,
'Recall': recall,
'F1 Score': f1,
'AUROC': roc_auc
}
return metrics_dict
def main():
# make output directory for this run
os.makedirs('results',exist_ok=True)
output_dir = f'results/{get_local_time()}'
os.makedirs(output_dir,exist_ok=True)
with open_logfile(f'{output_dir}/caid_benchmark_log.txt'):
# print configurations
print_configpy(config)
# Verify that the environment variables are set correctly
check_env_variables()
# make embeddings if needed
all_embedding_paths = embed_dataset_for_benchmark(
fuson_ckpts=config.FUSONPLM_CKPTS,
input_data_path='splits/splits.csv',
input_fname='CAID2_competition_sequences',
average=False, seq_col='Sequence',
benchmark_fusonplm=config.BENCHMARK_FUSONPLM,
benchmark_esm=config.BENCHMARK_ESM,
benchmark_fo_puncta_ml=False,
overwrite=config.PERMISSION_TO_OVERWRITE_EMBEDDINGS)
# load the splits with labels
splits_df = pd.read_csv('splits/splits.csv')
log_update(f"\nSplit breakdown...\n\t{len(splits_df.loc[splits_df['Split']=='Train'])} train seqs\n\t{len(splits_df.loc[splits_df['Split']=='Test'])} test seqs")
log_update("\nTraining and evaluating models")
# Set hyperparameters for disorder predictor
param_grid = {
'learning_rate': [5e-5],
'num_heads': [5, 8, 10],
'num_layers': [2, 4, 6],
'dropout': [0.2, 0.5],
'num_epochs': [2]
}
# loop through the embedding paths and train each one
for embedding_path, details in all_embedding_paths.items():
log_update(f"\nBenchmarking embeddings at: {embedding_path}")
grid_search_caid_predictor(embedding_path, details, output_dir, param_grid, overwrite_saved_model=config.PERMISSION_TO_OVERWRITE_MODELS)
# find the best grid search performer
find_best_hyperparams(output_dir, param_grid)
# make plots
#### caid test set
best_caid_model_results = pd.read_csv(f"{output_dir}/best_caid_model_results.csv")
#### fusion benchmark set
best_caid_model_results_benchmark = best_caid_model_results.drop(columns=
['AUROC','F1 Score','Accuracy','Precision','Recall']
).rename(columns={
'Fusion AUROC': 'AUROC',
'Fusion F1 Score': 'F1 Score',
'Fusion Accuracy': 'Accuracy',
'Fusion Precision': 'Precision',
'Fusion Recall': 'Recall'
})
if __name__ == "__main__":
main() |