File size: 33,833 Bytes
bae913a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 |
# Script for fetching FusionPDB level 2 and 3 data
import requests
import pandas as pd
import numpy as np
from bs4 import BeautifulSoup
import glob
import ast
import os
from pandas.errors import EmptyDataError
from fuson_plm.utils.logging import open_logfile, log_update, get_local_date_yr
def get_levels_dataframe(level, print_progress=False):
data, headers = scrape_level(level)
if print_progress:
# Output the extracted data - just a few rows
if level==2:
log_update(f'\nTable size {len(data)}; expected 2212')
if level==3:
log_update(f'\nTable size {len(data)}; expected 266')
log_update('Example rows 1-5:')
for i, row in enumerate(data):
log_update(row)
if i>5: break
df = pd.DataFrame(data, columns=headers)
df['URL'] = df['FusionGID'].apply(lambda x: x[1])
df['FusionGID'] = df['FusionGID'].apply(lambda x: x[0])
return df
def scrape_level(level):
level = str(level)
# The URL of the website
url = f"https://compbio.uth.edu/FusionPDB/gene_search_result_0.cgi?type=chooseLevel&chooseLevel=level{level}"
# Sending a request to the website
response = requests.get(url)
# Parsing the HTML content of the website
soup = BeautifulSoup(response.content, 'html.parser')
# Find the specific <h1> tag
if level == '2':
specific_h1 = soup.find('h1', text='2212 Fusion gene(s) for your query: level2')
if level== '3':
specific_h1 = soup.find('h1', text='266 Fusion gene(s) for your query: level3')
# Find the specific table following the <h1> tag
table = specific_h1.find_next('table', class_='geneList')
# Extract headers (only first 6 fields)
headers = [header.get_text().strip() for header in table.find_all('td', class_='content_middle_gene_summary')][0:6]
# Extract rows
rows = table.find_all('tr')[1:] # Skip the header row
# Extract data from rows
data = []
for row in rows:
columns = row.find_all('td', class_='content_middle_gene_summary')
if not columns:
continue
row_data = []
for column in columns:
link = column.find('a')
if link:
href = link['href']
fusion_gid = link.get_text(strip=True)
full_url = f"https://compbio.uth.edu/FusionPDB/{href}"
row_data.append((fusion_gid, full_url))
else:
row_data.append(column.get_text(strip=True))
data.append(row_data)
return data, headers
def get_structure_link_dataframe(id, print_progress=False):
rows = get_structure_links(id)
# IF printing progress, output the extracted data - just a few rows
if print_progress:
log_update(f'\nTable size {len(rows)}')
log_update('Example rows 1-5:')
for i, row in enumerate(rows):
log_update(row)
if i>5: break
# Make the dataframe - new row for each link - ONLY if there's actually data
if len(rows)>0:
df = pd.DataFrame(rows)
df = df.rename(columns={
'Fusion protein PDB link (fusion AA seq ID in FusionPDB)': 'Structure Link'
})
# make a new row for each link
df = df.explode('Structure Link').reset_index(drop=True)
df['Structure Link'] = df['Structure Link'].apply(lambda x: 'https://compbio.uth.edu/FusionPDB/' + str(x))
df['Structure Type'] = df['Structure Link'].apply(lambda x: 'PDB' if 'pdb_files' in x else ('CIF' if 'cif_files' in x else 'Unknown'))
df['FO_Name'] = df['Hgene'] + '::' + df['Tgene']
# Rename FO_Name to FusionGene
df = df.rename(columns={'FO_Name':'FusionGene'})
df['ID'] = [id]*len(df)
expected_cols = ['ID','Structure Link','Hgene','Hchr','Hbp','Hstrand','Tgene','Tchr','Tbp','Tstrand','Len(AA seq)','Structure Type','FusionGene','AA seq']
for col in expected_cols:
if not(col in list(df.columns)):
df[col] = ['']*len(df)
df = df[expected_cols]
#df['FusionGID'] = df['FusionGID'].apply(lambda x: x[0])
else:
df = pd.DataFrame()
return df
def get_structure_links(id, print_progress=False):
# Define the URL
url = f"https://compbio.uth.edu/FusionPDB/gene_search_result.cgi?page=page&type=quick_search&quick_search={id}"
# Fetch the webpage content
response = requests.get(url)
html_content = response.content
# Create a BeautifulSoup object
soup = BeautifulSoup(html_content, 'html.parser')
#with open(f'FusionPDB_{id}_soup.txt','w') as f:
#f.write(soup.prettify())
# Find the table with the title "Fusion Protein Structures"
table_title = soup.find('a', {'name': 'FusionSTR'})
rows = []
# Check that the h2 text is "Fusion Protein Structures"
if table_title and table_title.find('h2').text.strip() == 'Fusion Protein Structures':
# Find the next table with class 'geneList' after the title
table = table_title.find_next('table', class_='geneList')
table = table.find_next('table')
if table:
if print_progress: log_update('table found')
# Extract the headers from the first row
header_row = table.find('tr')
headers = [header.get_text(strip=True) for header in header_row.find_all('strong')]
# Extract the rows
rows = []
for row in table.find_all('tr')[1:]: # Skip the header row
cells = row.find_all('td')
row_data = {}
skip_next = False # Flag to skip the next cell
for i, cell in enumerate(cells):
# Get the link text if a link is present, otherwise get the text
if skip_next:
skip_next = False
continue # Skip this cell
cell_text = cell.get_text(strip=True)
if "3D view using mol*" in cell_text:
skip_next = True # Set the flag to skip the next cell
continue # Skip this cell
links = cell.find_all('a')
if links:
row_data[headers[i]] = [link.get('href') for link in links]
else:
celltext = cell.get_text(strip=True)
if len(celltext)>0:
row_data[headers[i]] = celltext
if len(row_data)>0: rows.append(row_data)
else:
log_update('table not found')
return rows
def process_td_elements(soup_object, add_links=False):
# Find all td elements with class "content_left_gene_summary"
td_elements = soup_object.find_all('td', class_='content_left_gene_summary')
# Extract and print the information
data = []
for td in td_elements:
# Extract the text content
strong_tag = td.find('strong')
if strong_tag:
text_content = strong_tag.get_text(strip=True)
else:
text_content = td.get_text(strip=True)
# Extract the link if available
if add_links:
link_tag = td.find('a')
if link_tag:
link = link_tag.get('href')
text_content += f" ({link})"
data.append(text_content)
return data
def get_hgene_tgene_info(id, print_progress=False):
# Define the URL
url = f"https://compbio.uth.edu/FusionPDB/gene_search_result.cgi?page=page&type=quick_search&quick_search={id}"
# Fetch the webpage content
response = requests.get(url)
html_content = response.content
# Create a BeautifulSoup object
soup = BeautifulSoup(html_content, 'html.parser')
#with open(f'FusionPDB_{id}_soup.txt','w') as f:
#f.write(soup.prettify())
# Find the table with the title "Fusion Protein Summary"
title_table = soup.find('table', class_='title')
if title_table and title_table.find('h2') and title_table.find('h2').get_text(strip=True) == 'Fusion Protein Summary':
# Next table is irrelevent; skip to 'geneList' table 2 tables from now
gene_list_table = title_table.find_next_sibling('table', class_='geneList').find_next_sibling('table', class_='geneList')
# Extract relevant data from this table
data = {
"Fusion gene name": [],
"FusionPDB ID": [],
"FusionGDB2.0 ID": [],
"Gene symbol": [],
"Gene ID": [],
"Gene name": [],
"Synonyms": [],
"Cytomap": [],
"Type of gene": [],
"Description": [],
"Modification date": [],
"UniProtAcc": []
}
td_data = process_td_elements(gene_list_table)
# need to split td_data into 2 parts: before 'Gene symbol' and after 'Gene symbol'
split_ind = td_data.index('Gene symbol')
fusion_info, ht_info = [td_data[0:split_ind], td_data[split_ind::]]
# first, process fusion info
for info in fusion_info:
if ':' in info:
#log_update(info)
key, value = info.split(':')[0:2]
if key in data:
data[key.strip()] = value.strip()
# now, process ht_info up to
# iterate 3 at a time
j_start=0
for i in range(0, len(ht_info), 3):
# get the elements
#log_update(len(ht_info[i:i+3]), ht_info[i:i+3])
key, value1, value2 = ht_info[i:i+3]
if key in data:
data[key.strip()] = [value1.strip(), value2.strip()]
if key=='UniProtAcc':
break
return data
def process_ids(ids, outdir='', level=2):
csv_filename = f'{outdir}/FusionPDB_level{level}_fusion_structure_links.csv'
already_processed_ids = []
if os.path.isfile(csv_filename):
already_processed_ids = pd.read_csv(csv_filename)
already_processed_ids = already_processed_ids['ID'].tolist()
structureless_ids = pd.read_csv("raw_data/fusionpdb/fusionpdb_structureless_ids.txt",sep="\t",header=None)[0].tolist()
log_update(f'\nLevel {level}:\n\tDownloading structure links for FusionPDB IDs:')
for i, id in enumerate(ids):
# only process if the csv_filename isn't already a file and if it's not one of the ones with no structure
if (id in already_processed_ids) or (id in structureless_ids):
continue
df = get_structure_link_dataframe(id)
if os.path.isfile(csv_filename):
df.to_csv(csv_filename, mode='a', index=False,header=False)
else:
df.to_csv(csv_filename, mode='w', index=False)
log_update(f'\t\t{i+1}. {id}')
def process_ids_ht(ids, outdir='',level=2):
outfile = f'{outdir}/level{level}_head_tail_info.txt'
if not(os.path.isfile(outfile)):
log_update(f"\n\tAcquiring UniProt accessions of head and tail genes for Level {level}")
with open(outfile, 'a+') as f1:
for id in ids:
data = get_hgene_tgene_info(id)
data = {
'FusionGID': data['FusionPDB ID'],
'HGID': data['Gene ID'][0],
'TGID': data['Gene ID'][1],
'HGUniProtAcc': data['UniProtAcc'][0],
'TGUniProtAcc': data['UniProtAcc'][1]
}
f1.write(str(data))
f1.write('\n')
f1.flush()
else:
log_update(f"\nAlready acquired UniProt accessions of head and tail genes for Level {level} at: {outfile}")
def download_file(url, directory):
# Download file, IF its destination doesn't already have a file there
local_filename = os.path.join(directory, url.split('/')[-1])
if os.path.exists(local_filename):
return local_filename
response = requests.get(url)
response.raise_for_status()
with open(local_filename, 'wb') as file:
file.write(response.content)
return local_filename
def download_structures(download_links):
# Directory where you want to save the downloaded files
download_directory = "raw_data/fusionpdb/structures"
os.makedirs(download_directory, exist_ok=True)
# Download all files
for link in download_links:
try:
log_update(f"Downloading {link}...")
download_file(link, download_directory)
log_update(f"\tDownloaded {link} to {download_directory}")
except Exception as e:
log_update(f"\tFailed to download {link}. Reason: {e}")
log_update("All downloads completed.")
def combine_ht_info():
# read the head and tail that was collected for levels 2 and 4
outdir = 'raw_data/fusionpdb'
head_tail_data = []
with open(f'{outdir}/level2_head_tail_info.txt','r') as f:
for line in f:
# Parse the line as a dictionary using ast.literal_eval
record = ast.literal_eval(line.strip())
head_tail_data.append(record)
with open(f'{outdir}/level3_head_tail_info.txt','r') as f:
for line in f:
# Parse the line as a dictionary using ast.literal_eval
record = ast.literal_eval(line.strip())
head_tail_data.append(record)
ht_df = pd.DataFrame(head_tail_data)
ht_df['FusionGID'] = ht_df['FusionGID'].astype(str)
return ht_df
# Add a column for the source of UniProtAcc
def find_h_source(row):
if row['HGUniProtAcc'] is not None:
return 'FusionPDB'
elif row['Entry_Hgene'] is not None:
return 'UniProt ID Map'
else:
return None
def find_t_source(row):
if row['TGUniProtAcc'] is not None:
return 'FusionPDB'
elif row['Entry_Tgene'] is not None:
return 'UniProt ID Map'
else:
return None
def correct_huniprot(row):
if row['HGUniProtAcc'] is not None:
return row['HGUniProtAcc']
elif row['Entry_Hgene'] is not None:
return row['Entry_Hgene']
else:
return None
def correct_tuniprot(row):
if row['TGUniProtAcc'] is not None:
return row['TGUniProtAcc']
elif row['Entry_Tgene'] is not None:
return row['Entry_Tgene']
else:
return None
def combine_ht_info_with_structure_links(giant, ht_df):
# Add in the head and tail data
giant_with_hts = pd.merge(giant, ht_df, on='FusionGID', how='left')
# make sure it's all strings here
giant_with_hts['HGID_x'] = giant_with_hts['HGID_x'].astype(str)
giant_with_hts['HGID_y'] = giant_with_hts['HGID_y'].astype(str)
giant_with_hts['TGID_x'] = giant_with_hts['TGID_x'].astype(str)
giant_with_hts['TGID_y'] = giant_with_hts['TGID_y'].astype(str)
giant_with_hts['HGID_match'] = giant_with_hts['HGID_x'] == giant_with_hts['HGID_y']
giant_with_hts['TGID_match'] = giant_with_hts['TGID_x'] == giant_with_hts['TGID_y']
# check if they're all true
assert giant_with_hts['HGID_match'].all() and giant_with_hts['TGID_match'].all()
# cool, all of them are true so now drop the extra columns
giant_with_hts = giant_with_hts.drop(['HGID_x','TGID_x','HGID_match','TGID_match'],axis=1).rename(columns={'HGID_y':'HGID','TGID_y':'TGID'})
giant_with_hts = giant_with_hts.replace('.',np.nan)
# Check - how many rows have uniprot IDs for both head and tail?
hgid_only = len(giant_with_hts[giant_with_hts['HGUniProtAcc'].notna() & giant_with_hts['TGUniProtAcc'].isna()])
tgid_only = len(giant_with_hts[giant_with_hts['HGUniProtAcc'].isna() & giant_with_hts['TGUniProtAcc'].notna()])
hgid_and_tgid = len(giant_with_hts[giant_with_hts['HGUniProtAcc'].notna() & giant_with_hts['TGUniProtAcc'].notna()])
neither = len(giant_with_hts[giant_with_hts['HGUniProtAcc'].isna() & giant_with_hts['TGUniProtAcc'].isna()])
log_update(f"\nFusions with HGID only: {hgid_only}")
log_update(f"Fusions with TGID only: {tgid_only}")
log_update(f"Fusions with HGID and TGID: {hgid_and_tgid}")
log_update(f"Fusions with neither: {neither}")
log_update(f"Sum = {hgid_only+tgid_only+hgid_and_tgid+neither} = {len(giant_with_hts)}")
# Collect all unmapped HGIDs and TGIDs
unmapped_h = set(giant_with_hts[giant_with_hts['HGUniProtAcc'].isna()]['Hgene'].tolist())
unmapped_t = set(giant_with_hts[giant_with_hts['TGUniProtAcc'].isna()]['Tgene'].tolist())
unmapped_parts = unmapped_h.union(unmapped_t)
log_update(f"unmapped hgenes: {len(unmapped_h)}")
log_update(f"unmapped tgenes: {len(unmapped_t)}")
log_update(f"unmapped parts (hgids or tgids): {len(unmapped_parts)}")
# We need to remap some Hgenes and Tgenes. There are some cases where FusionPDB got the wrong UniProt accessions.
wrong_uniprot_ids =[
'PRY',
'TIAF1',
'DCAF8L2',
'UMAD1',
'TIPIN',
'GAB3',
'OTOA',
'PAGR1',
'PRY2',
'FAM178A',
'SPATS2L',
'VMAC',
'ZNFX1',
'TFPT',
'TRANK1',
'RRP15',
'PAXBP1',
'RB1CC1',
'PACRGL',
'TRMT1L',
'PPPDE2',
'YY1AP1',
'RGP1',
'SHKBP1',
'RINT1',
'PRAM1',
'PIR',
'TMBIM6',
'PICK1',
'PLEC',
'NUDCD3',
'CCBL1',
'S100PBP',
'RTL1',
'C10orf140',
'CD177',
'SLF2',
'STARD3NL',
'RELL2',
'AMIGO1',
'TRAF3IP1',
'PNOC',
'PERM1',
'UBE2F',
'TBKBP1',
'PAN3',
'NSFL1C',
'SPAST',
'TOX4',
'RGPD8',
'ZDHHC9',
'SLAMF9',
'TNNT1',
'TEKT5',
'TPI1',
'TAAR6',
'SKIDA1',
'PMS1'
]
# Add Hgene accessions with commas
wrong_uniprot_ids += giant_with_hts[
~(giant_with_hts['HGUniProtAcc'].isna()) &
(giant_with_hts['HGUniProtAcc'].str.contains(","))
]['HGUniProtAcc'].tolist()
# Add Tgene accessions with commas
wrong_uniprot_ids += giant_with_hts[
~(giant_with_hts['TGUniProtAcc'].isna()) &
(giant_with_hts['TGUniProtAcc'].str.contains(","))
]['TGUniProtAcc'].tolist()
# Get a list of the Hgenes and Tgenes that need to be ID mapped, AGAIN
hts_tomap_part2 = giant_with_hts[giant_with_hts['HGUniProtAcc'].isin(wrong_uniprot_ids)]['Hgene'].tolist()
hts_tomap_part2 += giant_with_hts[giant_with_hts['TGUniProtAcc'].isin(wrong_uniprot_ids)]['Tgene'].tolist()
hts_tomap_part2 = set(hts_tomap_part2)
log_update(f"Total head and tail genes that need to be mapped again: {len(hts_tomap_part2)}")
# Write parts that need remapping to a file for submission to UniProt
with open('processed_data/fusionpdb/intermediates/unmapped_parts.txt','w') as f:
for part in unmapped_parts:
f.write(f'{part}\n')
for part in hts_tomap_part2:
f.write(f'{part}\n')
# set the accession to nan if it's in wrong_uniprot_ids
giant_with_hts.loc[
giant_with_hts['HGUniProtAcc'].isin(wrong_uniprot_ids),
'HGUniProtAcc'
] = np.nan
giant_with_hts.loc[
giant_with_hts['TGUniProtAcc'].isin(wrong_uniprot_ids),
'TGUniProtAcc'
] = np.nan
# We did the ID Map ahead of time on UniProt. Use this file.
idmap = pd.read_csv(f'raw_data/fusionpdb/hgene_tgene_uniprot_idmap_07_10_2024.txt',sep='\t')
# are there multiple GeneIDs for anything?
idmap['n_GeneID'] = idmap['GeneID'].apply(lambda x: [y for y in str(x).strip().split(';') if len(y)>0])
idmap['n_GeneID'] = idmap['n_GeneID'].apply(lambda x: len(x))
# are they all length 1?
log_update(f"Genes may have the following total #s of gene IDs: {idmap['n_GeneID'].unique()}")
# no they're not
# do they all end in ;?
log_update(f"All GeneIDs end in ; {idmap['GeneID'].apply(lambda x: x[-1] == ';' if type(x)==str else True).all()}") # say true if it's Nan, we don't care about this
# yes they do
# Merge new IDMap data from UniProt re-mapping with previous data
# Merge twice: one time, we merge as if the mapped genes are Hgenes; the other time, as if the mapped genes are Tgenes
idmap_merge = pd.merge(giant_with_hts, idmap[['From','Entry','GeneID']].rename(columns={'From':'Hgene', 'Entry': 'Entry_Hgene', 'GeneID': 'GeneID_Hgene'}), on='Hgene',how='left')
idmap_merge = pd.merge(idmap_merge, idmap[['From','Entry','GeneID']].rename(columns={'From':'Tgene', 'Entry': 'Entry_Tgene', 'GeneID': 'GeneID_Tgene'}), on='Tgene',how='left')
# From the original data, we have HGIDs and from the UniProt result, we have HGIDs with ; on the end. So make a 'HGID;' column to see if these match
idmap_merge['HGID;'] = idmap_merge['HGID'].astype(str) + ';'
idmap_merge['TGID;'] = idmap_merge['TGID'].astype(str) + ';'
# "Found" is true if the HGID; from the FusionPDB mapping is one of the GeneIDs returned by UniProt
idmap_merge['HGID_Found'] = idmap_merge.apply(lambda row: row['HGID;'] in str(row['GeneID_Hgene']), axis=1)
idmap_merge['TGID_Found'] = idmap_merge.apply(lambda row: row['TGID;'] in str(row['GeneID_Tgene']), axis=1)
# what do we keep from idmap merge?
# we keep columns where: there's an HGID and a TGID, OR
# if one of them is nan, its given gene id is in the list returned by uniprot
idmap_merge_success = idmap_merge.loc[
# Both were there to begin with
((idmap_merge['HGUniProtAcc'].notna()) & (idmap_merge['TGUniProtAcc'].notna())) |
# Hgene was missing, correct HGID was found
((idmap_merge['HGUniProtAcc'].isna()) & (idmap_merge['HGID_Found']==True)) |
# Tgene was missing, correct TGID was found
((idmap_merge['TGUniProtAcc'].isna()) & (idmap_merge['TGID_Found']==True))
].reset_index(drop=True)
idmap_merge_success['FusionGID'] = idmap_merge_success['FusionGID'].astype(str)
log_update(f"rows: {len(idmap_merge_success)}")
log_update(f"unique successful fusion GIDs: {len(idmap_merge_success['FusionGID'].unique())}")
# There are duplicate rowes with different GIDs for Hgenes and Tgenes. Here's the scheme for which row to keep.
# Priority 1: HGUniProtAcc.notna() and TGUniProtAcc.notna()
# Priority 2: HGID_Found and TGID_Found, and FusionGID is NOT in partition 1
# Priority 3: HGID_Found or TGID_Found, and FusionGID is NOT in partition 1 or 2.
# ^ If we get here, only one (Hgene OR Tgene) was found, since all combinations were tested.
# For whichever one worked, combine the appropriate information and get rid of the rest
partition1 = idmap_merge_success.loc[
# Both were there to begin with
((idmap_merge_success['HGUniProtAcc'].notna()) & (idmap_merge_success['TGUniProtAcc'].notna()))
].reset_index(drop=True)
partition1_gids = set(partition1['FusionGID'].tolist())
log_update("Partition 1: HGUniProtAcc.notna() and TGUniProtAcc.notna() --> both UniProt accessions were found on FusionPDB")
log_update(f"\t# GIDs: {len(partition1_gids)}")
partition2 = idmap_merge_success.loc[
# Hgene was missing, correct HGID was found or Tgene was missing, correct TGID was found.
(idmap_merge_success['HGID_Found']==True) & (idmap_merge_success['TGID_Found']==True) &
~(idmap_merge_success['FusionGID'].isin(partition1_gids))
].reset_index(drop=True)
partition2_gids = set(partition2['FusionGID'].tolist())
log_update("Partition 2: HGID_Found & TGID_Found --> both UniProt accessions were mapped successfully; one or both was found by remapping on UniProt")
log_update(f"\t# GIDs: {len(partition2_gids)}")
partition3 = idmap_merge_success.loc[
# it didn't satisfy one of the criteria for the first two partitions
~(
((idmap_merge_success['HGUniProtAcc'].notna()) & (idmap_merge_success['TGUniProtAcc'].notna())) |
((idmap_merge_success['HGID_Found']==True) & (idmap_merge_success['TGID_Found']==True))
) &
# one of the mapping was a success
((idmap_merge_success['HGID_Found']==True) | (idmap_merge_success['TGID_Found']==True)) &
# the FusionGID is not in partition 1 or 2
~(idmap_merge_success['FusionGID'].isin(partition1_gids)) &
~(idmap_merge_success['FusionGID'].isin(partition2_gids))
].reset_index(drop=True)
partition3_gids = set(partition3['FusionGID'].tolist())
log_update("Partition 3: HGID_Found or TGID_Found --> only one was successful, this was the best we can do")
log_update(f"\t# GIDs: {len(partition3_gids)}")
# check for dups
partition1_dups = partition1[partition1.duplicated('FusionGID')]['FusionGID'].unique().tolist()
partition2_dups = partition2[partition2.duplicated('FusionGID')]['FusionGID'].unique().tolist()
partition3_dups = partition3[partition3.duplicated('FusionGID')]['FusionGID'].unique().tolist()
log_update(f"\nDuplicate IDs in partition 1: {len(partition1_dups)}")
log_update(f"Duplicate IDs in partition 2: {len(partition2_dups)}")
log_update(f"Duplicate IDs in partition 3: {len(partition3_dups)} \tDuplicate rows: {len(partition3[partition3['FusionGID'].isin(partition3_dups)])}")
log_update(f"\nRows in original dataset: {len(idmap_merge_success)}")
log_update(f"Rows in partitions: {len(partition1)+len(partition2)+len(partition3)}")
# Check that all GIDs are represented
all_starting_fusiongids = set(idmap_merge_success['FusionGID'].tolist())
all_fusiongids = set(partition1['FusionGID'].tolist()) | set(partition2['FusionGID'].tolist()) | set(partition3['FusionGID'].tolist())
log_update(f"\nFusion GIDs captured in original dataset: {len(all_fusiongids)} {len(partition1_gids)+len(partition2_gids)+len(partition3_gids)}")
log_update(f"Fusion GIDs captured in the 3 partitions: {len(all_starting_fusiongids)}")
log_update(f"Same set? {all_starting_fusiongids == all_fusiongids}")
# Deal with partition 3's duplicates - group by FusionGID and join all the UniProt IDs returned for HGene and TGene
partition3['Entry_Hgene'] = partition3['Entry_Hgene'].astype(str)
partition3['Entry_Tgene'] = partition3['Entry_Tgene'].astype(str)
partition3 = partition3.groupby('FusionGID').agg({
'FusionGID': 'first',
'FusionGene': 'first',
'Hgene': 'first',
'Tgene': 'first',
'URL': 'first',
'HGID': 'first',
'TGID': 'first',
'HGUniProtAcc': 'first',
'TGUniProtAcc': 'first',
'Entry_Hgene': lambda x: ','.join(set([y for y in x])),
'GeneID_Hgene': 'first',
'Entry_Tgene': lambda x: ','.join(set([y for y in x])),
'GeneID_Tgene': 'first',
'HGID;': 'first',
'TGID;': 'first',
'HGID_Found': 'first',# there should only be one
'TGID_Found': 'first'# there should only be one
}
).reset_index(drop=True)
# Finally, recombine
recombined = pd.concat(
[
partition1,
partition2,
partition3
]
).reset_index(drop=True)
# there should be no duplicate GIDs in this
log_update(f"Duplicate GID rows: {len(recombined[recombined.duplicated('FusionGID')])}")
recombined = recombined.replace({np.nan: None, 'nan': None})
# Add the UniProt source so it's clear where we got these IDs from
recombined['HGUniProtAcc_Source'] = recombined.apply(lambda row: find_h_source(row), axis=1)
recombined['TGUniProtAcc_Source'] = recombined.apply(lambda row: find_t_source(row), axis=1)
recombined['HGUniProtAcc'] = recombined.apply(lambda row: correct_huniprot(row), axis=1)
recombined['TGUniProtAcc'] = recombined.apply(lambda row: correct_tuniprot(row), axis=1)
# Check: every row that has "UniProt ID Map" for HGUniProtAcc_Source should have an Entry_Hgene
log_update(f"Every row with UniProt ID Map as HGUniProtAcc_Source has an Entry_Hgene: {recombined.loc[recombined['HGUniProtAcc_Source']=='UniProt ID Map']['Entry_Hgene'].apply(lambda x: x is not None).all()}")
log_update(f"Every row with UniProt ID Map as TGUniProtAcc_Source has an Entry_Tgene: {recombined.loc[recombined['TGUniProtAcc_Source']=='UniProt ID Map']['Entry_Tgene'].apply(lambda x: x is not None).all()}")
log_update(f"Every row with no HGUniProtAcc_Source has no Entry_Hgene: {recombined.loc[recombined['HGUniProtAcc_Source']==None]['Entry_Hgene'].apply(lambda x: x is None).all()}")
log_update(f"Every row with no TGUniProtAcc_Source has no Entry_Tgene: {recombined.loc[recombined['TGUniProtAcc_Source']==None]['Entry_Tgene'].apply(lambda x: x is None).all()}")
# keep only 'FusionGID', 'FusionGene', 'Hgene', 'Tgene', 'URL', 'HGID', 'TGID', 'HGUniProtAcc', 'TGUniProtAcc', 'HGUniProtAcc_Source', 'TGUniProtAcc_Source'
recombined = recombined[['FusionGID', 'FusionGene', 'Hgene', 'Tgene', 'URL', 'HGID', 'TGID', 'HGUniProtAcc', 'TGUniProtAcc', 'HGUniProtAcc_Source', 'TGUniProtAcc_Source']]
recombined = recombined.replace({None: np.nan})
# print how many have each id
# how many rows have uniprot IDs for both?
hgid_only = len(recombined[recombined['HGUniProtAcc'].notna() & recombined['TGUniProtAcc'].isna()])
tgid_only = len(recombined[recombined['HGUniProtAcc'].isna() & recombined['TGUniProtAcc'].notna()])
hgid_and_tgid = len(recombined[recombined['HGUniProtAcc'].notna() & recombined['TGUniProtAcc'].notna()])
neither = len(recombined[recombined['HGUniProtAcc'].isna() & recombined['TGUniProtAcc'].isna()])
log_update(f"Fusions with HGID only: {hgid_only}")
log_update(f"Fusions with TGID only: {tgid_only}")
log_update(f"Fusions with HGID and TGID: {hgid_and_tgid}")
log_update(f"Fusions with neither: {neither}")
log_update(f"Sum = {hgid_only+tgid_only+hgid_and_tgid+neither} = {len(recombined)}")
return recombined
def scrape_fusionpdb_level_2_3():
# Scrape level 2 and save it
os.makedirs("raw_data/fusionpdb",exist_ok=True)
os.makedirs("processed_data/fusionpdb",exist_ok=True)
os.makedirs("processed_data/fusionpdb/intermediates",exist_ok=True)
matching_file = glob.glob('raw_data/fusionpdb/FusionPDB_level2_curated_*.csv')
if len(matching_file)>0:
log_update(f"\nLevel 2 was already scraped for IDs. Loading data from: {matching_file[0]}")
level2_df = pd.read_csv(matching_file[0])
else:
log_update(f"\nScraping Level 2 IDs from FusionPDB")
dt_tag = get_local_date_yr()
level2_df = get_levels_dataframe(2, print_progress=True)
level2_df['FusionGID'] = level2_df['FusionGID'].astype(str)
level2_df.to_csv(f'raw_data/fusionpdb/FusionPDB_level2_curated_{dt_tag}.csv',index=False)
# Scrape level 3 and save it
matching_file = glob.glob('raw_data/fusionpdb/FusionPDB_level3_curated_*.csv')
if len(matching_file)>>0:
log_update(f"\nLevel 3 was already scraped for IDs. Loading data from: {matching_file[0]}")
level3_df = pd.read_csv(matching_file[0])
else:
log_update(f"\nScraping Level 3 IDs from FusionPDB")
dt_tag = get_local_date_yr()
level3_df = get_levels_dataframe(3, print_progress=True)
level3_df['FusionGID'] = level3_df['FusionGID'].astype(str)
level3_df.to_csv(f'raw_data/fusionpdb/FusionPDB_level3_curated_{dt_tag}.csv',index=False)
# Check for ID overlap
level2_ids = set(level2_df['FusionGID'].tolist())
level3_ids = set(level3_df['FusionGID'].tolist())
log_update(f"Total overlapping fusionGIDs between levels 2 and 3: {len(level2_ids.intersection(level3_ids))}")
##### LEVEL 2: Get links to FusionPDB's provided structure files for all level 2 proteins in FusionPDB. Then, combine them into one file.
links_save_dir = 'raw_data/fusionpdb'
os.makedirs(links_save_dir,exist_ok=True)
process_ids(level2_ids,outdir=links_save_dir,level=2) # only processes ids that haven't been processed yet
# Get head and tail gene info for level 2 proteins
process_ids_ht(level2_ids,outdir=links_save_dir,level=2)
##### LEVEL 3: Get links to FusionPDB's provided structure files for all level 3 proteins in FusionPDB. Then, combine them into one file.
links_save_dir = 'raw_data/fusionpdb'
process_ids(level3_ids,outdir=links_save_dir,level=3)
# Get head and tail gene info for level 2 proteins
process_ids_ht(level3_ids,outdir=links_save_dir,level=3)
# Combine head and tail data
ht_df = combine_ht_info()
ht_df.to_csv("processed_data/fusionpdb/fusion_heads_and_tails.csv",index=False)
# Combine level 2 and level 3 data in two ways: (1) giant structure links file, (2) giant file with head and tail info
log_update("\nCombining level 2 and 3 data")
giant_level2 = pd.read_csv('raw_data/fusionpdb/FusionPDB_level2_fusion_structure_links.csv').rename(columns={'ID':'FusionGID'})
giant_level2 = pd.merge(giant_level2, level2_df[['FusionGID','FusionGene','URL','HGID','TGID']],on=['FusionGID','FusionGene'],how='left')
log_update(f"\tSize of raw_data/fusionpdb/FusionPDB_level2_fusion_structure_links.csv: {len(giant_level2)}")
giant_level3 = pd.read_csv('raw_data/fusionpdb/FusionPDB_level3_fusion_structure_links.csv').rename(columns={'ID':'FusionGID'})
giant_level3 = pd.merge(giant_level3, level3_df[['FusionGID','FusionGene','URL','HGID','TGID']],on=['FusionGID','FusionGene'],how='left')
log_update(f"\tSize of raw_data/fusionpdb/FusionPDB_level3_fusion_structure_links.csv: {len(giant_level3)}")
giant_level2['Level'] = [2]*len(giant_level2)
giant_level3['Level'] = [3]*len(giant_level3)
##### Create some intermediate "giant" files, combining bulk info for levels 2 and 3
# These files are intermediate for two reasons:
# - giant_level2-3_fusion_protein_structure_links: doesn't have head and tail structural info
# - giant_level2-3_fusion_protein_head_tail_info: only has fusion proteins that have at least one mappable head/tail
giant_sl = pd.concat([giant_level2,giant_level3]).drop_duplicates().reset_index(drop=True)
giant_sl.sort_values(by='FusionGID',ascending=True).reset_index(drop=True).to_csv('processed_data/fusionpdb/intermediates/giant_level2-3_fusion_protein_structure_links.csv',index=False)
# Structure link file should be done - make sure there are no duplicate GIDs
log_update(f"\nSaving file with all Level 2 and 3 Structure links (size: {len(giant_sl)}) to: processed_data/fusionpdb/intermediates/giant_level2-3_fusion_protein_structure_links.csv")
# Create and download CSV of combined head and tail info
giant_ht = pd.concat([level2_df,level3_df]).reset_index(drop=True)
# ensure the type is string
giant_ht['FusionGID'] = giant_ht['FusionGID'].astype(str)
giant_with_ht = combine_ht_info_with_structure_links(giant_ht, ht_df)
giant_with_ht.sort_values(by='FusionGID',ascending=True).reset_index(drop=True).to_csv('processed_data/fusionpdb/intermediates/giant_level2-3_fusion_protein_head_tail_info.csv',index=False)
# Download structure links
download_structures(giant_sl['Structure Link'].tolist())
def main():
with open_logfile("fetch_fusionpdb_data_log.txt"):
scrape_fusionpdb_level_2_3()
if __name__ == "__main__":
main()
|