Text Generation
Transformers
English
AI
NLP
Cybersecurity
Ethical Hacking
Pentesting
Inference Endpoints
pentest_ai / README.md
Canstralian's picture
Update README.md
fe3f49e verified
|
raw
history blame
1.26 kB
---
license: mit
language:
- en
---
## Model Details
**Model Name:** `Canstralian/pentest_ai`
**Base Model:** `WhiteRabbitNeo/WhiteRabbitNeo-13B-v1`
**Model Version:** `1.0.0`
## Intended Use
The **Canstralian/pentest_ai** model is specifically designed for **penetration testing** applications. It assists security professionals and ethical hackers in automating and enhancing security assessment tasks. The model is well-suited for generating reconnaissance strategies, conducting vulnerability assessments, report generation, and automating scripting tasks related to penetration testing.
## How to Use
To utilize the **Canstralian/pentest_ai** model, ensure you have the `transformers` library installed, and load the model as follows:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Canstralian/pentest_ai")
model = AutoModelForCausalLM.from_pretrained("Canstralian/pentest_ai")
# Example usage
input_text = "Generate a reconnaissance plan for the target network."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)