|
--- |
|
license: mit |
|
language: |
|
- en |
|
--- |
|
|
|
## Model Details |
|
**Model Name:** `Canstralian/pentest_ai` |
|
**Base Model:** `WhiteRabbitNeo/WhiteRabbitNeo-13B-v1` |
|
**Model Version:** `1.0.0` |
|
|
|
## Intended Use |
|
The **Canstralian/pentest_ai** model is specifically designed for **penetration testing** applications. It assists security professionals and ethical hackers in automating and enhancing security assessment tasks. The model is well-suited for generating reconnaissance strategies, conducting vulnerability assessments, report generation, and automating scripting tasks related to penetration testing. |
|
|
|
## How to Use |
|
To utilize the **Canstralian/pentest_ai** model, ensure you have the `transformers` library installed, and load the model as follows: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load the tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained("Canstralian/pentest_ai") |
|
model = AutoModelForCausalLM.from_pretrained("Canstralian/pentest_ai") |
|
|
|
# Example usage |
|
input_text = "Generate a reconnaissance plan for the target network." |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(generated_text) |
|
|