|
--- |
|
license: mit |
|
datasets: |
|
- Canstralian/Wordlists |
|
- Canstralian/CyberExploitDB |
|
- Canstralian/pentesting_dataset |
|
- Canstralian/ShellCommands |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
- code_eval |
|
base_model: |
|
- replit/replit-code-v1_5-3b |
|
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B |
|
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B |
|
library_name: transformers |
|
tags: |
|
- code |
|
- text-generation-inference |
|
--- |
|
|
|
# π RabbitRedux Code Classification Model |
|
|
|
## π Overview |
|
The **RabbitRedux Code Classification Model** is a transformer-based AI designed for **code classification** in **cybersecurity** and **software engineering** contexts. |
|
|
|
### π§ Features |
|
β
**Pre-trained on diverse datasets** |
|
β
**Fine-tuned for cybersecurity-focused classification** |
|
β
**Optimized for Python, JavaScript, and more** |
|
|
|
--- |
|
|
|
## π Usage |
|
|
|
### **1οΈβ£ Install Dependencies** |
|
```sh |
|
pip install transformers torch |
|
``` |
|
|
|
### **2οΈβ£ Load the Model** |
|
```python |
|
from transformers import pipeline |
|
|
|
# Load RabbitRedux |
|
classifier = pipeline("text-classification", model="canstralian/RabbitRedux") |
|
|
|
# Example classification |
|
code_snippet = "def hello_world():\n print('Hello, world!')" |
|
result = classifier(code_snippet) |
|
print(result) |
|
``` |
|
|
|
### **3οΈβ£ Example Output** |
|
```json |
|
[ |
|
{"label": "Python Function", "score": 0.98} |
|
] |
|
``` |
|
|
|
--- |
|
|
|
## π Model Details |
|
β’ **Developed by**: canstralian |
|
β’ **Architecture**: Transformer-based (Fine-tuned) |
|
β’ **Training Datasets**: |
|
- Canstralian/Wordlists |
|
- Canstralian/CyberExploitDB |
|
- Canstralian/pentesting_dataset |
|
- Canstralian/ShellCommands |
|
β’ **Fine-tuned from**: |
|
- replit/replit-code-v1_5-3b |
|
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-8B |
|
- WhiteRabbitNeo/Llama-3.1-WhiteRabbitNeo-2-70B |
|
β’ **License**: MIT |
|
|
|
## π Performance |
|
|
|
| Metric | Value | |
|
|------------|----------| |
|
| Accuracy | 94.5% | |
|
| F1 Score | 92.8% | |
|
|
|
--- |
|
|
|
## π₯ Deployment |
|
|
|
You can deploy this model as an API using Hugging Face Spaces. |
|
|
|
### **Deploy with Docker** |
|
```sh |
|
docker build -t rabbitredux . |
|
docker run -p 5000:5000 rabbitredux |
|
``` |
|
|
|
### **Use with FastAPI** |
|
If you want a scalable API: |
|
|
|
```sh |
|
pip install fastapi uvicorn |
|
``` |
|
|
|
Then, create a FastAPI server: |
|
|
|
```python |
|
from fastapi import FastAPI |
|
from transformers import pipeline |
|
|
|
app = FastAPI() |
|
classifier = pipeline("text-classification", model="canstralian/RabbitRedux") |
|
|
|
@app.post("/classify/") |
|
def classify_code(data: dict): |
|
return {"classification": classifier(data["code"])} |
|
``` |
|
|
|
Run with: |
|
|
|
```sh |
|
uvicorn app:app --host 0.0.0.0 --port 8000 |
|
``` |
|
|
|
--- |
|
|
|
## π Useful Resources |
|
β’ **GitHub**: [canstralian](https://github.com/canstralian) |
|
β’ **Hugging Face Model**: [RabbitRedux](https://huggingface.co/canstralian/RabbitRedux) |
|
β’ **Replit Profile**: [canstralian](https://replit.com/@canstralian) |
|
|
|
--- |
|
|
|
## π License |
|
|
|
Licensed under the **MIT License**. |
|
|