elselse's picture
CIRCL/cwe-parent-vulnerability-classification-huggingface-CodeBERTa-small-v1
f8cbb4a verified
metadata
library_name: transformers
base_model: huggingface/CodeBERTa-small-v1
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: cwe-parent-vulnerability-classification-huggingface-CodeBERTa-small-v1
    results: []

cwe-parent-vulnerability-classification-huggingface-CodeBERTa-small-v1

This model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3718
  • Accuracy: 0.7753
  • F1 Macro: 0.3835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro
3.2521 1.0 25 3.3015 0.0112 0.0057
3.037 2.0 50 3.2608 0.3258 0.1301
3.0191 3.0 75 3.3140 0.3146 0.0568
2.8876 4.0 100 3.2111 0.2472 0.2190
2.7888 5.0 125 3.1305 0.2360 0.2394
2.6762 6.0 150 3.1370 0.3146 0.1503
2.5905 7.0 175 3.0446 0.3933 0.2144
2.4173 8.0 200 2.9769 0.3933 0.1999
2.2706 9.0 225 2.9704 0.3708 0.1825
2.1355 10.0 250 2.9071 0.3820 0.2097
2.0722 11.0 275 2.9189 0.4382 0.1855
1.8111 12.0 300 2.7873 0.4157 0.2257
1.7056 13.0 325 2.7584 0.4607 0.2217
1.6693 14.0 350 2.7394 0.5169 0.2370
1.496 15.0 375 2.6647 0.5506 0.2630
1.3093 16.0 400 2.6477 0.5843 0.2644
1.251 17.0 425 2.6355 0.6067 0.2654
1.1316 18.0 450 2.5521 0.6404 0.3000
1.049 19.0 475 2.5236 0.6404 0.2951
0.9441 20.0 500 2.5538 0.6404 0.2957
0.8752 21.0 525 2.5020 0.6742 0.3259
0.7623 22.0 550 2.4927 0.6966 0.3339
0.7938 23.0 575 2.4595 0.7079 0.3413
0.6321 24.0 600 2.4564 0.7079 0.3369
0.6245 25.0 625 2.4537 0.7191 0.3631
0.5502 26.0 650 2.4470 0.7416 0.3764
0.5805 27.0 675 2.4588 0.7528 0.3849
0.5042 28.0 700 2.4243 0.7640 0.3930
0.464 29.0 725 2.4051 0.7640 0.3930
0.4349 30.0 750 2.4361 0.7753 0.4034
0.4347 31.0 775 2.4062 0.7640 0.3906
0.3953 32.0 800 2.3939 0.7753 0.3835
0.3775 33.0 825 2.4091 0.7865 0.3958
0.3948 34.0 850 2.4018 0.7865 0.3958
0.348 35.0 875 2.3718 0.7753 0.3835
0.3328 36.0 900 2.3843 0.7865 0.3947
0.3291 37.0 925 2.3843 0.7978 0.3965
0.3211 38.0 950 2.3764 0.7865 0.3958
0.307 39.0 975 2.3822 0.7978 0.3975
0.3055 40.0 1000 2.3855 0.7978 0.3965

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2